系统机械能守恒定律
- 格式:ppt
- 大小:44.50 KB
- 文档页数:6
机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。
“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
列式形式:E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)mgh 1 +121212222mV mgh mV =+ 或者 ∆E p 减 = ∆E k 增5. 如图所示在一根细棒的中点C 和端点B ,分别固定两个质量、体积完全相同的小球,棒可以绕另一端A 在竖直平面内无摩擦地转动. 若从水平位置由静止释放,求两球到达最低位置时线速度的大小. 小球的质量为m ,棒的质量不计. 某同学对此题的解法是:设AB=L ,AC=L2,到最低位置时B 球和C 球的速度大小分别为v 1、v 2.运动过程中只有重力对小球做功,所以每个球的机械能都守恒.:C 球有21122Lmv mg =,1v (m/s) B 球有 2212m v m g L =,2v =(m/s) 你同意上述解法吗?若不同意,请简述理由并求出你认为正确的结果. 5. (10分)解: 不同意,因为在此过程中,细棒分别对小球做功,所以每个小球的机械能不守恒. 说出“不同意”得3分,说出理由得2分 但对棒、小球组成的系统,机械能守恒:mgL+mg L 2=12m 2C v +12m 2B v (2分) 又v B =2vC , (1分)可解得: v C =15gL 5, v B =215gL5(2分) 17.质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。
支架的两直角边长度分别为2l 和l ,支架可绕固定轴O 在竖直平面内无摩擦转动,如图所示。
开始时OA 边处于水平位置,由静止释放,则 ( ) A .A 球的最大速度为gl )12(632- B .A 球的速度最大时,两小球的总重力势能为零C .A 球的速度最大时,两直角边与竖直方向的夹角为45°D .A 、B 两球的最大速度之比v 1∶v 2=2∶116.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为(C )A. R m 2ωB. 24222R m g m ω-C.24222R m g m ω+D .不能确定22.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B 运动到最高点时,球B 对杆恰好无作用力.求:(1)球B 在最高点时,杆对水平轴的作用力大小.(2)球B 转到最低点时,球A 和球B 对杆的作用力分别是多大?方向如何? 解:(1)球B 在最高点时速度为v 0,有Lvm mg 220=,得gL v 20=.此时球A 的速度为gL v 221210=,设此时杆对球A 的作用力为F A ,则 ,5.1,)2/(20mg F Lv mmg F A A ==-, A 球对杆的作用力为,5.1mg F A ='.水平轴对杆的作用力与A 球对杆的作用力平衡,再据牛顿第三定律知,杆对水平轴的作用力大小为F 0=1. 5 mg.(2)设球B 在最低点时的速度为B v ,取O 点为参考平面,据机械能守恒定律有222020)2(21212)2(21212B B v m m g L m v L m g v m m gL m v L m g +++⋅-=+-+⋅解得gL v B 526=。
机械能守恒定律深度解析机械能守恒定律是一个重要的物理定律,用于描述系统中机械能守恒的原理。
在本文中,我们将对机械能守恒定律进行深入解析,从基本概念到实际应用进行探讨。
一、机械能的定义与表示在物理学中,机械能是指物体由于位置和速度而具有的能量形式。
它包括了动能和势能两个组成部分。
动能表示物体由于速度而具有的能量,与物体的质量和速度的平方成正比。
势能表示物体由于位置而具有的能量,与物体的质量和高度成正比。
机械能可以用以下公式表示:机械能(Em) = 动能(Ek)+ 势能(Ep)二、机械能守恒定律的表述机械能守恒定律是指在一个封闭系统中,当没有外力做功或外力做功等于零时,系统的机械能保持不变。
换句话说,如果没有能量进出系统,那么系统的机械能将保持不变。
这可以用以下公式来表示:E1 = E2其中,E1表示系统初态的机械能,E2表示系统末态的机械能。
三、机械能守恒定律的应用1. 自由落体运动自由落体是指在重力作用下,物体不受其他力的影响,只受到重力的作用而自由下落。
根据机械能守恒定律,自由落体运动中,物体的势能转化为动能,动能的增加与势能的减小成正比。
2. 弹性碰撞在弹性碰撞中,物体之间发生相互作用,能量可以在物体之间转移。
但是根据机械能守恒定律,总的机械能仍然保持不变。
这意味着碰撞前的总机械能等于碰撞后的总机械能。
3. 摩擦力和机械能守恒定律当有摩擦力存在时,机械能守恒定律不再适用。
摩擦力会将机械能转化为其他形式的能量,如热能或声能。
四、机械能守恒定律的局限性虽然机械能守恒定律在许多情况下都能够准确描述系统中机械能的转化,但在某些特殊情况下,它可能无法适用。
例如在存在非保守力或系统有多个自由度的情况下,机械能守恒定律可能会失效。
五、实例分析下面通过一个实例来进一步说明机械能守恒定律的应用。
假设有一个以一定速度v1沿平地运动的小车,其具有质量m,机械能守恒,即系统初态的机械能等于系统末态的机械能。
此时,系统末态的机械能为动能与势能之和,即E2 = 1/2 mv2^2 + mgh其中v2为小车的速度,h为小车的高度。
机械能守恒定律的三个表达式
1. 机械能守恒定律的第一个表达式被表述为总机械能守恒。
对于一个完全受力,其机械能(即势能与动能的和)将始终保持恒定。
这是因为能量在其各种形式之间进行转换,但总量不会发生变化。
或者用公式来描述就是:E=Ek+Ep,在无外力作用情况下,系统的总机械能(E)等于系统的动能(Ek)和势能(Ep)之和,并且该值为常数。
2. 机械能守恒定律的第二个表达式是势能转化为动能,且两者可相互转换。
在垂直投掷运动中,物体上升时,动能逐渐转化为势能,直到到达最高点时,所有的动能都转化为势能,而下落时,势能又转化为动能。
即,它描述了能量状态的变
化过程,尤其是在势能和动能之间的转换。
公式为:动能 = 总机械能 - 势能;势能= 总机械能 - 动能。
3. 机械能守恒定律的第三个表达式是初动能加初势能等于末动能加末势能,即在整个运动过程中,无论物体如何运动,只要不受非保守力的影响,总机械能始终保持不变。
具体的数学表达是:初动能(Ek1)+初势能(Ep1)=末动能(Ek2)+
末势能(Ep2)。
这个表达式揭示了在闭合系统中,不论物质的内部状态如何变化,只需有足够的保守力在起作用,其系统的总机械能就会始终保持恒定。
机械能守恒定律(系统的机械能守恒)系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,就看除了重力、弹力之外,系统内的各个物体所受到的各个力做功之和是否为零,为零,则系统的机械能守恒;做正功,系统的机械能就增加,做做多少正功,系统的机械能就增加多少;做负功,系统的机械能就减少,做多少负功,系统的机械能就减少多少。
系统间的相互作用力分为三类:1)冈I」体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。
3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。
在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。
虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。
但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。
归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。
(4)悬点在水平面上可以自由移动的摆动类。
(1)轻绳连体类这一类题目系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,倾角为二的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度?分析:对M、m和细绳所构成的系统,受到外界四个力的作用。
它们分别是:M所受的重力Mg, m所受的重力mg,斜面对M的支持力N,滑轮对细绳的作用力F。
M、m的重力做功不会改变系统的机械能,支持力N垂直于M的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
机械能守恒定律引言机械能守恒定律是物理学中一个基本的定律,它描述了在没有外力做功的情况下,一个物体的机械能保持不变。
机械能守恒定律是经典力学的重要定律之一,对于分析物体的运动和相互作用具有重要意义。
本文将详细介绍机械能守恒定律的原理、应用以及相关的例子。
定义和原理机械能是物体在运动过程中所具有的能量,包括动能和势能。
机械能守恒定律指出,一个系统的总机械能在没有外力做功的情况下保持不变。
换句话说,系统的总机械能在运动的过程中始终保持恒定。
机械能守恒定律可以通过能量守恒定律和功的定义来推导得出。
根据能量守恒定律,系统的总能量在任意时刻都保持不变。
根据功的定义,功是力对物体做的功,即力乘以位移。
在没有外力做功的情况下,系统的总功为零。
因此,系统的总能量保持不变。
应用机械能守恒定律在物理学中有广泛的应用。
下面将介绍一些常见的应用场景。
1. 自由落体问题自由落体是指物体在重力作用下自由地运动。
根据机械能守恒定律,一个自由落体物体在运动过程中,仅受重力做功,而不受其他外力的影响。
因此,它的总机械能保持不变。
在没有空气阻力的情况下,自由落体物体的机械能由势能和动能组成,而且二者之间存在着一个转换关系。
2. 弹力问题弹力是指物体受到弹性体作用力的结果。
对于一个由弹性体支撑的物体,当物体发生变形时,弹性体会对物体施加弹力。
根据机械能守恒定律,在没有耗散的情况下,弹性体对物体做的功等于物体动能的变化量。
因此,我们可以利用机械能守恒定律来求解弹力问题。
3. 摆锤问题摆锤是指一个质量固定的物体通过绳索或杆连接到一个固定点,并在重力作用下进行摆动。
对于一个摆锤系统,机械能守恒定律可以很好地描述它的运动。
在摆锤的摆动过程中,重力对物体做功使得势能转化为动能,同时动能也会转换为势能。
系统的总机械能保持不变。
示例下面通过一些例子来具体说明机械能守恒定律的应用。
示例1:自由落体问题考虑一个物体从高处自由落下的情况。
在物体开始下落时,它具有势能,动能为零。
机械能守恒定律机械能守恒定律(1)机械能包括动能、重力势能和弹性势能. 其中,重力势能的大小和零势面的选取有关,可正可负,是个标量;弹性势能是物体由于发生形变而具有的能,如果一个弹簧的形变量不变,那么它的弹性势能也不变.(2)机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.k p k p E E E E ''+=+,或k p E E ∆=∆(3)机械能守恒定律的应用①条件:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒;对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有化为其他形式的能,则系统机械能守恒.②判断机械能守恒:若物体或系统只有重力或系统内弹力做功,则机械能守恒;若物体或系统中只有动能和势能的相互转化,则机械能守恒;物体间发生非弹性碰撞(除特别说明)时,机械能不守恒.③机械能守恒定律与动能定理的比较:机械能守恒定律反映的是物体初末状态的机械能间的关系,这种守恒是有条件的;动能定理反映了物体动能变化与合外力做功的关系,这个关系总是成立的.④应用机械能守恒定律时,要先明确研究对象,根据研究对象经过的物理过程,进行受力和做功分析,判断机械能是否守恒,若守恒,再恰当地选取参考平面,确定研究对象在初末态的机械能,最后列方程求解. ⑤重力做了多少功,物体的重力势能就改变了多少,即G p W E =-.⑥若机械能不守恒,那么除了重力及系统内弹力之外的其它力所做的功就是机械能的改变量.【诊断自测】1. 朝诗人杜甫的《登高》中有这样两句诗:“无边落木萧萧下,不尽长江滚滚来。
”从物理学的角度来说,“落木萧萧下”的过程是 能转化为 能;而“滚滚来”的长江水蕴含丰富的 能。
2. 如图所示,长为L 的匀质链条,对称地悬挂在光滑的小滑轮上.若链条因受到微扰而滑动,则链条刚脱离滑轮时的速度为 。
机械能守恒定律的表达式机械能守恒定律是物理学中的一个重要原理,它规定了在任何系统上,机械能的总和保持不变。
它的表达式形式如下:∑ΔE = 0其中,ΔE表示机械能的变化量,比如说,物体由状态A到状态B所发生的机械能变化量就是ΔE,“=”表示等号,“0”表示机械能的总和变化量为0,也就是说,机械能的总和是不变的。
机械能守恒定律就是这样一个定律,它表明了系统内机械能的变化总和为零,即机械能的总和是不变的。
这一定律的应用非常广泛,可以说,几乎每个物理学家都会用到它。
机械能守恒定律的发现也为物理学的发展奠定了基础。
机械能守恒定律可以用来解释物体运动的情况,例如物体从A点向B点运动的情况。
在这种情况下,可以将系统的机械能分为两个部分,一个是由A点向B点运动时发生的机械能变化量ΔEA,另一个是由B点向A点运动时发生的机械能变化量ΔEB。
根据机械能守恒定律,我们就可以得出ΔEA + ΔEB = 0,这就是机械能守恒定律的表达式,也就是说,物体从A点到B点运动时所发生的机械能变化量ΔEA和从B点到A点运动时所发生的机械能变化量ΔEB之和为零,也就是说,机械能的总和是不变的。
机械能守恒定律也可以用来解释物体的旋转运动,例如圆形的运动。
在这种情况下,可以将系统的机械能分为两个部分,一个是由旋转中心向外旋转时发生的机械能变化量ΔEA,另一个是由外向旋转中心旋转时发生的机械能变化量ΔEB。
根据机械能守恒定律,我们就可以得出ΔEA + ΔEB = 0,这就是机械能守恒定律的表达式,也就是说,物体从旋转中心向外旋转时所发生的机械能变化量ΔEA和从外向旋转中心旋转时所发生的机械能变化量ΔEB 之和为零,也就是说,机械能的总和是不变的。
机械能守恒定律还可以用来解释其他物理现象,比如势能的变化,通过对势能的变化量进行推导,就可以得出机械能守恒定律的表达式。
通过对这个定律的研究,人们可以更好地理解许多物理现象,并利用它来解决许多实际问题。
机械能及守恒定律引言机械能是物理学中一个重要的概念,它描述了一个物体在力的作用下所具有的能量。
机械能的守恒定律是指在一个封闭系统中,机械能的总量保持不变。
在本文中,我们将介绍机械能及其守恒定律的基本原理和应用。
机械能的定义机械能是由物体的动能和势能组成的。
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
势能是物体由于位置而具有的能量,它与物体的质量和重力势能或弹性势能有关。
根据这些定义,机械能可以表示为以下公式:机械能(E)= 动能(K)+ 势能(U)动能可以表示为以下公式:动能(K)= 0.5 × 质量(m)× 速度的平方(v²)重力势能可以表示为以下公式:重力势能(U)= 质量(m)× 重力加速度(g)× 高度(h)弹性势能可以表示为以下公式:弹性势能(U)= 0.5 × 弹性系数(k)× 形变的平方机械能守恒定律的原理机械能守恒定律是来自于能量守恒定律的一个特例。
能量守恒定律是指在一个封闭系统中,能量的总量保持不变。
机械能守恒定律是能量守恒定律在机械能方面的应用。
根据机械能的定义和能量守恒定律,我们可以得出机械能守恒定律的表达式:初始机械能(E₁)= 最终机械能(E₂)在没有外力做功和没有能量转化的情况下,机械能守恒定律成立。
这意味着一个物体在自由下落过程中,重力势能的减少等于动能的增加。
机械能守恒定律的应用机械能守恒定律在实际生活中有广泛的应用。
以下是一些常见的应用场景:1. 自由落体运动当一个物体从高处自由落下时,根据机械能守恒定律,我们可以计算物体的速度和高度的关系。
如果知道物体的初始高度和速度,我们可以推算出物体在任意时刻的位置和速度。
2. 弹簧振动弹簧振动是一个典型的应用机械能守恒定律的例子。
当一个弹簧振子在平衡位置附近发生振动时,弹性势能和动能之间会相互转换,但它们的总和保持不变。
这使我们能够计算弹簧振动的周期和频率。
机械能守恒定律表达式是什么
基本的公式是Ek1+Ep1=Ek2+Ep2 等号前的是初始状态的机械能,等号后的是末态的机械能。
ΔE1=ΔE2,E 减=E 增,W=ΔE。
1 机械能守恒定律表达式机械能守恒定律
在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互
转化,但机械能保持不变。
其数学表达式可以有以下两种形式:
过程式:
1.WG+WFn=∆Ek
2.E 减=E 增(Ek 减=Ep 增、Ep 减=Ek 增)
状态式:
1.Ek1+Ep1=Ek2+Ep2(某时刻,某位置)
2.1/2mv12+mgh1=1/2mv22+mgh2[这种形式必须先确定重力势能的参考平面] 1 机械能守恒定律的三种表达式1.从能量守恒的角度
选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
2.从能量转化的角度
系统的动能和势能发生相互转化时,若系统势能的减少量等于系统动能的
增加量,系统机械能守恒。
3.从能量转移的角度。
机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。
这个规律叫做机械能守恒定律。
机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。
如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。
外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。
这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。
这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。
这只能在一些特殊的惯性参考系如地球参考系中才成立。
如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。
机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。
【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。
一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。
从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。
当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。
当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。
机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
机械能守恒定律机械能守恒定律力学中的重要定律。
物质系统内只有保守内力作功,非保守内力(如摩擦力)和一切外力所作的总功为零时,系统内各物体的动能和势能可以互相转换,但它们的总量保持不变。
说明:(1)根据质点系的动能定理,我们有W外+W内保+W内非=Ek2-Ek1,由于保守内力所作的功可以表示为势能增量的负值,即W内保=-(Ep2-Ep1),这样就可得W外+W内非=(Ek2+Ep2)-(Ek1+Ep1),W外+W内非=E2-E1。
此式表示,质点系在运动过程中,它所受外力的功与系统内非保守力的功之总和,等于它的机械能的增量。
当W外=0、W内非=0时,就有系统机械能保持不变的守恒定律E2=E1=常量。
(2)机械能守恒定律是牛顿运动定律的一个推论,因此只有在惯性系中成立。
当W外=0,W内非=0以及Fi外=0的条件下,系统的机械能守恒在所有惯性系中绝对成立。
而当Fi外≠0,但W外=0,W内非=0时,系统的机械能守恒只对某个特定的惯性系成立。
(3)在中学物理中,保守力遇到最多的是重力和弹力。
因此,如果物体系各物体只有重力和弹力对它们做功,而无其他力做功时,系统机械能守恒。
这一守恒是运动变化中的守恒,是转化中的守恒,总量的守恒,但就系统内各物体而言,其动能和势能各自并不是不变的,而是互相转化的。
机械能守恒定律是对一个过程而言的,在只涉及重力及弹力作功的过程中,机械能守恒定律应用时,只考虑初始状态和终了状态的动能和势能,而不考虑运动的各个过程的详细情况。
因此,如果不要求了解过程的具体情况,用机械能守恒定律来分析某些力学过程,比用其他方法简便得多。
(4)一个不受外界作用的系统叫做封闭系统或孤立系统。
对于封闭系统,外力的功当然为零。
如果系统状态发生变化时,有非保守内力做功,它的机械能就不守恒。
但在这种情况下,对更广泛的物理现象,包括电磁、热、化学以及原子内部的变化等研究表明,如果扩大能量的范围,引入更多的能量概念,如电磁能、内能、化学能或原子核能,即能证明:一个封闭系统经历任何变化时,该系统的所有能量的总和是不改变的,它只是从一种形式的能量转化为另一种形式的能量,或从系统的此一物体传递给彼一物体。
机械能守恒定律的原理与应用一、机械能守恒定律的原理1.定义:机械能守恒定律是指在一个封闭的系统中,如果没有外力做功,或者外力做的功为零,那么系统的机械能(动能和势能之和)将保持不变。
2.表达式:机械能守恒定律可以用数学公式表示为:E_k + E_p =constant,其中E_k表示动能,E_p表示势能,constant表示常数。
3.条件:机械能守恒定律成立的条件是:系统受到的合外力为零,或者外力做的功为零。
在实际问题中,通常需要忽略摩擦力、空气阻力等因素。
二、机械能守恒定律的应用1.判断能量转化:在分析一个物体在受到外力作用下从一个位置移动到另一个位置的过程中,可以通过机械能守恒定律判断动能和势能的转化关系。
2.解决动力学问题:在解决动力学问题时,如果系统受到的合外力为零,或者外力做的功可以忽略不计,可以直接应用机械能守恒定律来求解物体的速度、位移等物理量。
3.设计机械装置:在设计和分析机械装置(如摆钟、滑轮组等)的工作原理时,可以利用机械能守恒定律来解释和预测系统的行为。
4.航天工程:在航天工程中,卫星、飞船等航天器在太空中运动时,由于受到的空气阻力很小,可以近似认为机械能守恒。
因此,机械能守恒定律在航天器的轨道计算、动力系统设计等方面有重要应用。
5.体育运动:在体育运动中,例如跳水、跳高等项目,运动员在运动过程中受到的空气阻力和摩擦力相对较小,可以忽略不计。
因此,机械能守恒定律可以用来分析运动员的速度、高度等参数。
6.生活中的例子:如滚摆运动、电梯运动等,可以通过机械能守恒定律来解释和预测物体在不同位置、不同速度下的状态。
综上所述,机械能守恒定律是物理学中的一个重要原理,在解决实际问题时具有广泛的应用价值。
在学习和应用过程中,要掌握其原理和条件,并能够灵活运用到各种场景中。
习题及方法:1.习题:一个物体从地面上方以5m/s的速度竖直下落,不计空气阻力,求物体落地时的速度和落地时的高度。
方法:根据机械能守恒定律,物体的势能转化为动能,即 mgh = 1/2 mv^2,其中m为物体质量,g为重力加速度,h为高度,v为速度。
十二指肠憩室与胆道结石关系的探讨
[背景]十二指肠憩室在行内镜下逆行胰胆管造影术(endoscopic retrograde cholangio-pancreatography, ERCP)检出率约为3.2%-26%,目前研究报告对十二指肠憩室是否对胆管插管或者术后主要并发症有影响仍有一定争议。
[目的]探讨十二指肠憩室的存在与胆道结石关系,对ERCP胆管插管及对术后主要并发症的影响,并从侧面了解我院初期ERCP水平。
[方法]回顾性分析2010年1月至2012年1月期间,在我院行ERCP的179例患者,分析比较憩室组(A组)与非憩室(B组)患者的年龄,胆道结石发生率,胆结石发生部位、插管成功率及并发症。
[结果]179例患者中,憩室组59例,男性为30名,女性为29名,平均年龄为67岁。
憩室伴发胆道结石达55例,其中原发性胆总管结石为8例。
非憩室组120例,男性为57名,女性为63名,平均年龄为57岁。
非憩室组胆道结石为92例,原发性胆总管结石为14例。
原发性胆总管结石发生率两组分别为:13.56%和11.67%,两者有统计学差异(P=0.001)。
憩室组插管成功率达91.53%(54/59),非憩室组达96.67%(116/120),插管成功率无统计学意义(91.53%VS96.67%, P=0.139, Fisher矫正后为0.158)。
憩室组与非憩室组PEP发生率分别达:11.86%(7/59)及8.33%(10/120),两组之间PEP发生率无差别(11.86%VS8.33%,P=-0.574)。
[结论]十二指肠憩室的存在随年龄增大而发病率升高,憩室的存在与胆道结石发生相关,其对ERCP插管成功率及术后主要并发症无影响。
机械能守恒定律的理解及应用机械能守恒定律是物理学中非常重要的定律之一,在物理学中占据着非常重要的地位。
他是一个非常简单的概念,但是它的应用却是非常的广泛。
下面将会详细的讲解机械能守恒定律的定义、特性和应用。
首先,让我们来了解一下机械能守恒定律的定义。
机械能守恒定律是指在一个封闭系统中,只要系统内部的各个物体之间没有发生粘滞、摩擦、阻力等消耗能量的现象,那么他们所具有的机械能之和将会保持不变。
机械能守恒定律包括重力势能和动能两部分。
重力势能指的是物体在某一高度处具有的潜在能量,动能则是物体运动过程中具有的能量。
机械能守恒定律的表达式为:机械能守恒定律:E1=E2 。
其次,让我们来了解一下机械能守恒定律的特性。
机械能守恒定律有一些非常重要的特性,下面来一一介绍。
1、机械能守恒定律的本质是能量守恒定律。
因为机械能守恒定律的原理就是万有引力定律,万有引力定律又可以归纳为能量守恒定律。
2、机械能守恒定律只适用于封闭系统。
因为只有在封闭系统内部,才能保证各个物体之间没有发生能量的损失现象。
3、机械能守恒定律只适用于机械能。
因为机械能指的是物体在相互作用下所具有的能量,其他种类的能量如热能等不能用机械能守恒定律来描述。
4、机械能守恒定律可以用于各种物理问题的求解,尤其是在求解动能和势能的问题中应用比较广泛。
最后,我们来谈一谈机械能守恒定律的应用。
机械能守恒定律的应用非常广泛,比如在力学中经常用来计算动能和势能的转化,动量守恒问题,牛顿反作用原理等。
另外,在能源转换、工程设计中也经常会用到机械能守恒定律。
例如,电站的水轮发电机系统、跳水运动员跳下去后得分高低的判定等。
总之,机械能守恒定律是一个相对比较简单的物理定律,在物理学的各个领域中都有着广泛的应用。
学会了它,就可以更加深入地理解万物运动的本质,并且可以更好地应用于实际问题的解决。
不过,需要注意的是机械能守恒定律虽然简单,但是限制比较严格,不是所有物理问题都可以用它来解决。