机械能守恒定律及其应用习题(较难)
- 格式:doc
- 大小:389.00 KB
- 文档页数:4
7.8 习题课:机械能守恒定律的应用一夯实基础1.如图所示,一轻绳的一端系在固定粗糙斜面上的O点,另一端系一小球.给小球一足够大的初速度,使小球在斜面上做圆周运动.在此过程中()A.小球的机械能守恒B.重力对小球不做功C.轻绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少量2.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度,如图2所示,从子弹开始入射到共同上摆到最大高度的过程中,下面说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对3.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A 能够下降的最大高度为h,若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B 下降h时的速度大小为(重力加速度为g,不计空气阻力)()A.2ghB.ghC. gh2 D.04.如图所示的滑轮光滑轻质,阻力不计,M1=2 kg,M2=1 kg,M1离地高度为H=0.5 m,g=10 m/s2.M1与M2从静止开始释放,M1由静止下落0.3 m时的速度为()A. 2 m/sB.3 m/sC.2 m/sD.1 m/s5.如图所示,小物体A和B通过轻质弹簧和轻绳跨过光滑定滑轮连接,初状态在外力控制下系统保持静止,轻弹簧处于原长,且轻弹簧上端离滑轮足够远,A离地面足够高,物体A和B同时从静止释放,释放后短时间内B能保持静止,A下落h高度时,B开始沿斜面上滑,则下列说法中正确的是()A.B滑动之前,A机械能守恒B.B滑动之前,A机械能减小C.B滑动之前,A、B组成的系统机械能守恒D.B滑动之后,A、B组成的系统机械能守恒6.竖直放置的轻弹簧下连接一个小球,用手托起小球,使弹簧处于压缩状态,如图6所示.则迅速放手后(不计空气阻力)()A.放手瞬间小球的加速度等于重力加速度B.小球、弹簧与地球组成的系统机械能守恒C.小球的机械能守恒D.小球向下运动过程中,小球动能与弹簧弹性势能之和不断增大7.内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为2R的轻杆,一端固定有质量为m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点,如图所示,由静止释放后()A.下滑过程中甲球减少的机械能总是等于乙球增加的机械能B.下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能C.甲球可沿凹槽下滑到槽的最低点D.杆从右向左滑回时,乙球一定能回到凹槽的最低点8.如图所示,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动。
高中机械能守恒定律练习题及讲解一、选择题1. 一个物体在水平面上以一定速度运动,若忽略空气阻力和摩擦力,该物体的机械能将:A. 增加B. 减少C. 保持不变D. 无法确定2. 一个物体从静止开始自由下落,不考虑空气阻力,其重力势能和动能的变化情况是:A. 重力势能减少,动能增加B. 重力势能增加,动能减少C. 重力势能和动能都增加D. 重力势能和动能都减少3. 一个物体在竖直平面内做匀速圆周运动,若忽略空气阻力,其机械能:A. 增加B. 减少C. 保持不变D. 先增加后减少二、填空题4. 当一个物体从一定高度自由下落时,其重力势能转化为______。
5. 一个物体在水平面上以匀速直线运动,若忽略摩擦力,其机械能______。
三、简答题6. 解释为什么在没有外力作用的情况下,一个物体在水平面上滚动时,其机械能保持不变。
7. 一个物体在竖直方向上做自由落体运动时,其势能和动能如何转换?四、计算题8. 一个质量为2kg的物体从10米高处自由下落,忽略空气阻力,求物体落地时的动能。
9. 一个质量为5kg的物体在水平面上以3m/s的速度滚动,求物体的动能。
五、分析题10. 描述一个场景,其中物体的机械能不守恒,并解释原因。
11. 讨论在实际生活中,哪些因素可能导致机械能不守恒,并给出相应的例子。
六、实验题12. 设计一个实验来验证机械能守恒定律,并描述实验步骤和预期结果。
13. 如果在实验中观察到机械能不守恒的现象,请分析可能的原因。
七、论述题14. 论述机械能守恒定律在物理学中的重要性及其在工程学中的应用。
15. 探讨机械能守恒定律在解决实际问题时的局限性和适用范围。
通过这些练习题,学生可以加深对机械能守恒定律的理解,并学会如何应用这一定律来解决实际问题。
机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。
这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。
习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。
求小球的初始速度。
解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。
自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。
在自由落体过程中,小球的动能为mgh,势能为0。
在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。
根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。
习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。
求物体的初始动能和弹簧的势能。
解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。
在撞击后,物体的动能为0,弹簧的势能为kx^2/2。
根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。
习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。
求M与m的比值。
解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。
在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
机械能守恒定律及其应用(建议用时:45分钟)【A级基础题练熟快】1. (2019 •浙江杭州模拟)如图所示,荡秋千是小朋友们最喜欢的一项传统游戏,人通过下蹲和站起,使秋千越荡越高.忽略绳的质量及空气阻力,则()A. 在最高点人下蹲时,重力势能转化为动能B. 在最高点时人和秋千板所受到的合力为零C. 在最低点秋千板对人的支持力等于人的重力D. 在摆动过程中人和秋千的机械能总和不变解析:选A.在最高点人下蹲时,重力势能转化为动能,选项A正确;在最高点时人和秋千板的速度为零,但是所受到的合力不为零,有斜向下的切向加速度,选项B错误;在最低点加速度竖直向上,则秋千板对人的支持力大于人的重力,选项C错误;在摆动过程中,人要对秋千板做功,使得人和秋千的机械能总和增加,选项D错误.2 . (2019 •河北廊坊联考)如图所示,一轻质弹簧一端固定在水平天花板上,另一端挂一重物,当弹簧处于原长时,重物由静止释放,不计空气阻力,关于重物下落过程,下列说法正确的是()A. 加速度一直变大B. 动能先变大后变小C. 弹簧与重物组成的系统的机械能一直变小D. 重物的重力势能先变大后变小解析:选B.重物从释放至下落到最低点的过程中,合力先向下,向下运动的过程中,弹力增大,加速度减小,当弹力等于重力后,弹力大于重力,加速度向上,弹力增大,加速度增大,所以加速度先减小后增大,在平衡位置时,加速度为零;速度方向先与加速度方向相同,然后与加速度方向相反,则重物的速度先增大后减小,当加速度为零时,速度最大,故A 错误;结合加速度的方向可知,重物的动能先增大后减小,故B正确;整个过程中只有重力和弹簧的弹力做功,所以弹簧与重物组成的系统的机械能一直不变,故C错误;重物下降的过程中重力一直做正功,所以重物的重力势能一直减小,故D错误.3. (2019 •湖南岳阳质检)如图,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道•甲、乙两小孩沿不同轨道同时从A处以相同大小的速度自由滑向B处,下列说法正确的有()A. 甲的切向加速度始终比乙的大B. 甲、乙在同一高度的速度相同C. 甲比乙先到达B处D. 甲、乙在同一时刻总能到达同一高度解析:选C.由受力分析及牛顿第二定律可知,甲的切向加速度先比乙的大,后比乙的小,故A错误;由机械能守恒定律可知,各点的机械能保持不变,高度(重力势能)相等处的动能也相等,故速度大小相等,但速度方向不同,故B错误;甲的切向加速度先比乙的大,速度增大的比较快,开始阶段的位移比较大,故甲总是先达到同一高度的位置,故C正确,D错误.4. (2019 •浙江温州九校联考)如图是在玩“跳跳鼠”的儿童,该玩具弹簧上端连接脚踏板,下端连接跳杆,儿童在脚踏板上用力向下压缩弹簧,然后弹簧将人向上弹起,最终弹簧将跳杆带离地面,下列说法正确的是()A. 从人被弹簧弹起到弹簧第一次恢复原长,人一直向上加速运动B. 无论下压弹簧的压缩量多大,弹簧都能将跳杆带离地面C. 人用力向下压缩弹簧至最低点的过程中,人和“跳跳鼠”组成的系统机械能增加D. 人用力向下压缩弹簧至最低点的过程中,人和“跳跳鼠”组成的系统机械能守恒解析:选C.从人被弹簧弹起到弹簧第一次恢复原长,人先向上做加速运动,当人的重力与弹力相等时,速度最大,由于惯性人向上做减速运动,故A错误;当下压弹簧的压缩量较小时,弹簧的拉伸量也较小,小于跳杆的重力时,跳杆不能离开地面,故B错误;人用力向下压缩弹簧至最低点的过程中,人的体能转化为系统的机械能,所以人和“跳跳鼠”组成的系统机械能增加,故C正确,D错误.5. (多选)(2019 •江西景德镇模拟)如图所示,一根不可伸长的轻绳两端各系一个小球a和b,跨在两根固定在同一高度的光滑水平细杆上,a球置于地面上,质量为m的b球从水平位置静止释放.当 b 球第一次经过最低点时,a 球对地面压力刚好为零.下列结论正确的是A. a 球的质量为2mb 球的机械能守恒,则有: mgL = j mv 2;当b 球摆过的角度为90。
板块三限时规范特训时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.关于弹性势能,下列说法中正确的是()A.当弹簧变长时弹性势能一定增大B.当弹簧变短时弹性势能一定减小C.在拉伸长度相同时,k越大的弹簧的弹性势能越大D.弹簧在拉伸时弹性势能一定大于压缩时的弹性势能答案 C解析当弹簧处于压缩状态时,弹簧变长时弹力做正功,弹性势能减小。
弹簧变短时,弹力做负功,弹性势能增加,故A、B错误。
当拉伸长度相同时,k越大的弹簧的弹性势能越大,故C正确。
当k 相同时,伸长量与压缩量相同的弹簧,弹性势能也相同,故D错误。
2.如图所示,光滑细杆AB、AC在A点连接,AB竖直放置,AC水平放置,两个相同的中心有小孔的小球M、N,分别套在AB 和AC上,并用一细绳相连,细绳恰好被拉直,现由静止释放M、N,在运动过程中,下列说法中正确的是()A.M球的机械能守恒B.M球的机械能增大C.M和N组成的系统机械能守恒D.绳的拉力对N做负功答案 C解析细杆光滑,故M、N组成的系统机械能守恒,N的机械能增加,绳的拉力对N做正功、对M做负功,M的机械能减少,故C正确,A、B、D错误。
3. [2017·福建福州模拟]如图所示,竖立在水平面上的轻弹簧,下端固定,将一个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢如图甲所示。
烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动如图乙所示。
那么该球从细线被烧断到刚脱离弹簧的运动过程中,(不计空气阻力)下列说法正确的是()A.弹簧、小球所构成的系统机械能守恒B.球刚脱离弹簧时动能最大C.球所受合力的最大值等于重力D.小球所受合外力为零时速度最小答案 A解析烧断细线后,小球受重力和弹力作用,故弹簧、小球所构成的系统机械能守恒,A正确;小球受到重力和向上的弹力两个力,弹簧的弹力先大于重力,小球加速上升,后弹力小于重力,小球减速上升,所以球的动能先增大后减小,当加速度等于零时,此时所受的合力为零,即小球受到的弹簧的弹力等于小球的重力时速度最大,动能最大,此时弹簧尚处于压缩状态,故B、D错误;小球脱离弹簧后还能继续向上运动,由简谐运动的对称性可知,小球所受合力的最大值(在最低点)大于重力,C错误。
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
机械能守恒定律及其应用练习题基础达标1.质量为m的物体从距地面h高处的某点自由落下,在这过程中不计空气阻力,下列说法正确的是:()A.重力对物体做功为mgh B.重力势能减少mghC.动能增加mgh D.机械能增加mgh2.关于机械能是否守恒的叙述,正确的是:()A.作匀速直线运动的物体的机械能一定守恒B.作匀速直线运动的物体机械能可能守恒C.合外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒3.在不计空气阻力的条件下,下列几种运动中机械能不守恒的是:()A.氢气球匀速上升B.从高处向任意方向抛出的小球C.物体沿光滑曲面下滑D.一小球用一细绳拴着在摆动的过程中4.汽车上坡时,如果牵引力的大小等于摩擦力,不计空气阻力,那么,下列说法中哪一个是正确的:()A.汽车匀速上坡B.汽车在上坡过程中机械能减小C.汽车在上坡过程中机械能增大D.汽车在上坡过程中,动能减小,势能增大,总的机械能不变5.物体静止在某一高处时具有60J的势能。
当它从该处自由下落至另一位置时所具的势能为动能的一半,那么,物体所减少的势能是下列中的哪一个:()A.20J B.30J C.40J D.60J6.质量为m的物体从距地面高为H的平台边缘以初速度v0竖直向下抛出。
若不计空气阻力,则物体下落到距地面高为h时的动能为下列中的哪一种:()A.mgh+B.mgH-mgh C.mgH+-mgh D.mgH++ mgh7.如图所示,m1>m2,滑轮光滑且质量不计,在m1下降一段距离d的过程中(不计空气阻力),下列说法正确的是:()A.m1的机械能增加B.m2的机械能增加C.m1和m2的总机械能减少D.m1和m2的总机械能不变8.某同学身高1.8m,在运动会上参加跳高比赛,起跳后身体横着越过了1.8m高度的横杆,据此可估算出他起跳时竖直向上的速度大约为:()(g取10m/s2)A.2m/s B.4m/s C.6m/s D.8m/s9.如图所示,一匀质直杆AB长为,从图示位置由静止沿光滑面ABD滑动,AB是半径为r的四分之一圆弧,BD为水平面,求直杆全部滑到BD时的速度大小。
机械能守恒练习题一、选择题1. 机械能守恒的条件是()A. 物体只受重力作用B. 物体只受重力和弹簧弹力作用C. 物体只受重力和摩擦力作用D. 物体只受重力和电场力作用2. 在机械能守恒的情况下,下列哪个说法是正确的?()A. 物体的动能和势能之和不变B. 物体的动能和势能之和可以变化C. 物体的动能保持不变D. 物体的势能保持不变3. 一个物体从高处自由落下,不考虑空气阻力,其机械能()A. 增加B. 减少C. 保持不变D. 先增加后减少4. 一个物体在水平面上做匀速直线运动,其机械能()A. 增加B. 减少C. 保持不变D. 无法确定5. 一个物体在竖直方向上做匀速直线运动,其机械能()A. 增加B. 减少C. 保持不变D. 无法确定二、填空题6. 当物体只受重力作用时,其______能守恒。
7. 机械能守恒定律表明,在没有非保守力做功的情况下,物体的______能和______能之和保持不变。
8. 一个物体从静止开始自由下落,其动能逐渐______,而势能逐渐______。
9. 在机械能守恒的情况下,物体的总机械能等于______。
10. 机械能守恒定律适用于______系统。
三、简答题11. 解释为什么在没有摩擦力的情况下,一个物体在斜面上下滑时,其机械能守恒。
12. 描述一个实验来验证机械能守恒定律,并说明实验步骤和预期结果。
四、计算题13. 一个质量为2kg的物体从10米高处自由落下,忽略空气阻力。
求物体落地时的速度和动能。
五、论述题14. 论述机械能守恒定律在实际应用中的重要性,并给出两个不同领域的应用实例。
六、实验设计题15. 设计一个实验来探究在不同质量的物体从同一高度自由落下时,机械能守恒的情况。
描述实验步骤、所需器材及预期结果。
七、判断题16. 在机械能守恒的情况下,物体的势能转化为动能,但总机械能保持不变。
()17. 一个物体在竖直方向上做匀速直线运动时,其机械能不守恒。
一课一练31:机械能守恒定律及其应用分析:主要涉及单体、多体及含弹簧的机械能守恒问题,特别是关联物体的机械能守恒务必厘清研究的对象。
处理的方法:可以列守恒式(初末状态的相等)、转化式(增加量与减少量相等)、转移式(A 、B 物体增减量相等)。
1.(多选)有一款蹿红的微信小游戏“跳一跳”,游戏要求操作者通过控制棋子(质量为m ,可视为质点)脱离平台时的速度,使其能从平台跳到旁边的同一水平面上的另一平台.如图所示的抛物线为棋子在某次跳跃过程中的运动轨迹,轨迹的最高点距平台上表面高度为h ,不计空气阻力,重力加速度为g ,则( )A .棋子从离开平台至运动到最高点的过程中,重力势能增加mghB .棋子从离开平台至运动到最高点的过程中,机械能增加mghC .棋子离开平台后距平台面高度为h 2时的动能为mgh 2D .棋子落到另一平台上时的速度大于2gh2.(多选)三个小物块分别从3条不同光滑轨道的上端由静止开始滑下。
已知轨道1、轨道2、轨道3的上端距水平地面的高度均为04h ;它们的下端水平,距地面的高度分别为10h h =、202h h =、303h h =,如图所示。
若沿轨道1、2、3下滑的小物块的落地点到轨道下端的水平距离分别记为1s 、2s 、3s ,则( )A .12s s >B .23s s >C .13s s =D .23s s = 3.(多选)如图所示,一轻质弹簧固定在光滑杆的下端,弹簧的中心轴线与杆重合,杆与水平面间的夹角始终为60°,质量为m 的小球套在杆上,从距离弹簧上端O 点2x 0的A 点静止释放,将弹簧压至最低点B ,压缩量为x 0 ,不计空气阻力,重力加速度为g .下列说法正确的是( )A .小球从接触弹簧到将弹簧压至最低点B 的过程中,其加速度一直减小B .小球运动过程中最大动能可能为mgx 0C .弹簧劲度系数大于3mg 2x 0D .弹簧最大弹性势能为332mgx 0 4.如图所示,一根足够长的光滑细杆倾斜固定放置在竖直平面内,它与以O 为圆心、R 为半径的圆(图中虚线表示)相交于B 、C 两点,一轻弹簧一端固定在圆心O 点,另一端连接一质量为m 的小球,小球穿在细杆上且能自由滑动,小球由圆心正上方的A 点静止释放,经过B 点时弹簧恰好处于原长,此时小球速度为v ,整个过程弹簧均在弹性限度内,则小球从A 点到C 点的运动过程中,下列判断正确的是( )A .小球机械能守恒B .小球经过B 点时速度最大C .小球经过C 点时速度一定大于vD .小球重力势能和动能之和先减小后增大再减小5.如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁.现让一小球自左端槽口A 点的正上方由静止开始下落,从A 点与半圆形槽相切进入槽内,则下列说法正确的是( )A .小球在半圆形槽内运动的全过程中,只有重力对它做功B .小球从A 点向半圆形槽的最低点运动的过程中,小球处于失重状态C .小球从A 点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D .小球从下落到从右侧离开槽的过程中机械能守恒6.(多选)如图所示,质量为m 的小环套在固定的光滑竖直杆上,一足够长且不可伸长的轻绳一端与小环相连,另一端跨过光滑的定滑轮与质量为M 的物块相连,已知M =2 m .与定滑轮等高的A 点和定滑轮之间的距离为3 m ,定滑轮大小及质量可忽略.现将小环从A 点由静止释放,小环运动到C 点速度为0,重力加速度取g =10 m/s 2,则下列说法正确的是( )A .A 、C 间距离为4 mB .小环最终静止在C 点C .小环下落过程中减少的重力势能始终等于物块增加的机械能D .当小环下滑至绳与杆的夹角为60°时,小环与物块的动能之比为2∶17.(多选)将质量分别为m 和2m 的两个小球A 和B ,用长为2L 的轻杆相连,如图所示,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止释放,在B球顺时针转动到最低位置的过程中(不计摩擦) ()A.A、B两球的线速度大小始终不相等B.重力对B球做功的瞬时功率先增大后减小C.B球转动到最低位置时的速度大小为23gLD.杆对B球做正功,B球机械能不守恒8.一倾角为的斜面体固定在水平面上,其斜面部分光滑,现将两个质量均为m的物块A和B叠放在一起,给A、B整体一初速度使其共同沿斜面向上运动,如图所示,已知A的上表面水平,则在向上运动过程中,下列说法正确的是()A.物块B对A的摩擦力方向水平向右B.物块A对B的作用力做正功C.A对B的摩擦力大小为sin cosmgθθD.由于B减速运动,则B的机械能减少9.(多选)如图甲所示,质量为M的物体放在光滑水平桌面上,用轻绳通过定滑轮与质量为m的物体相连,m所受重力为5 N;如图乙所示,同一物体M放在光滑水平桌面上,用轻绳通过定滑轮施加竖直向下的拉力F,拉力F的大小也是5 N.开始时M距桌边的距离相等,则()A.M到达桌边时的速度相等,所用的时间也相等B.图甲中M到达桌边用的时间较长,速度较小C.图甲中M到达桌边时的动能较大,所用时间较短D.图乙中绳子受到的拉力较大10.(多选)如图所示,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r的相同小球,各球编号如图.斜面与水平轨道OA平滑连接,OA长度为6r.现将六个小球由静止同时释放,小球离开A点后均做平抛运动,不计一切摩擦.则在各小球运动过程中,下列说法正确的是()A.球1的机械能守恒B.球6在OA段机械能增大C.球6的水平射程最小D.六个球落地点各不相同11.如图所示,左侧竖直墙面上固定半径为R=0.3 m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆.质量为m a=100 g的小球a套在半圆环上,质量为m b=36 g的滑块b套在直杆上,二者之间用长为l=0.4 m的轻杆通过两铰链连接.现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10 m/s2.求:(1)小球a滑到与圆心O等高的P点时的向心力大小;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功.12.如图所示,倾角30°的光滑斜面上,轻质弹簧两端连接着两个质量均为m=1 kg的物块B和C,C紧靠着挡板P,B通过轻质细绳跨过光滑定滑轮与质量M=8 kg的物块A连接,细绳平行于斜面,A在外力作用下静止在圆心角为60°、半径R=2 m的16光滑圆弧轨道的顶端a处,此时绳子恰好拉直且无张力;圆弧轨道最低端b与粗糙水平轨道bc相切,bc与一个半径r=0.2 m的光滑圆轨道平滑连接.由静止释放A,当A滑至b时,C恰好离开挡板P,此时绳子断裂.已知A与bc间的动摩擦因数μ=0.1,重力加速度g=10 m/s2,弹簧的形变始终在弹性限度内,细绳不可伸长.(1)求弹簧的劲度系数;(2)求物块A滑至b处,绳子断后瞬间,A对圆轨道的压力大小;(3)为了物块A能进入圆轨道且不脱轨,则bc间的距离应满足什么条件?一课一练31:机械能守恒定律及其应用答案1.【答案】AD【解析】以平台表面为零势能面,则棋子在最高点的重力势能为mgh ,故棋子从离开平台至运动到最高点的过程中,重力势能增加mgh ,A 正确;棋子从离开平台至运动到最高点的过程中,不计空气阻力,只有重力做功,机械能守恒,B 错误;棋子在最高点的机械能E =mgh +12mv x 2,v x 为棋子在最高点的速度。
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
机械能守恒定律及其应用测试题及解析1.(2018·天津高考)滑雪运动深受人民群众喜爱。
某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变解析:选C 运动员从A 点滑到B 点的过程做匀速圆周运动,合外力指向圆心,不做功,故A 错误,C 正确。
如图所示,沿圆弧切线方向运动员受到的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,故B 错误。
运动员下滑过程中动能不变,重力势能减小,则机械能减小,故D 错误。
2.(2019·内江一模)如图所示,弹性轻绳的一端套在手指上,另一端与弹力球连接,用手将弹力球以某一竖直向下的初速度向下抛出,抛出后手保持不动。
从球抛出瞬间至球第一次到达最低点的过程中(弹性轻绳始终在弹性限度内,空气阻力忽略不计),下列说法正确的是( )A .绳伸直以后,绳的拉力始终做负功,球的动能一直减小B .该过程中,手受到的绳的拉力先增大后减小C .该过程中,重力对球做的功大于球克服绳的拉力做的功D .在最低点时,球、绳和地球组成的系统势能最大解析:选D 绳伸直以后,绳的拉力始终做负功,但重力大于拉力时球的速度增大,故球的动能增大,当重力与拉力相等时球的速度最大,动能最大,继续向下,当重力小于拉力时球的速度减小,则球的动能减小,A 错误;该过程中,手受到绳的拉力一直增大,B 错误;由动能定理可得W G -W 克绳=0-12m v 02,该过程中重力对球做的功小于球克服绳的拉力做的功,C 错误;在最低点时,小球的动能为零,球、绳和地球组成的系统势能最大,D 正确。
3.[多选]如图所示,光滑长铁链由若干链节组成,全长为L ,圆形管状轨道半径为R ,L >2πR ,R 远大于一节铁链的高度和长度。
第六节机械能守恒定律1、如下图所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变2、在利用电磁打点计时器验证自由下落过程中机械能守恒的实验中,电磁打点计时器是用来测量____的仪器,某学生在实验时打出的纸带如图所示,其中O为重锤由静止下落时打下的第一个点,A、B、C、D为选出的计数点,每相邻两点间都有一个点未画出,用刻度尺测得各点到O点的距离都标在纸带上,实验所在地重力加速度g=9.8m/s2,根据数据计算:打下C 点时重锤的速度大小v= (填计算式)=(填数值)。
重锤从O由静止下落到打C点时的动能增加为mJ,重力势能的减力量为mJ.3、(1)用落体法验证机械能守恒定律,下面哪些测量工具是必需的?( )(A)天平(B)弹簧秤(C)刻度尺(D)秒表(2)图是实验中得到的一条纸带。
已知打点计时器所用电源的频率为50Hz,当地的重力加速度g=9.80m/s2,测得所用重物的质量为1.00kg,纸带上第0、1两点间距离接近2mm,A、B、C、D是连续打出的四个点,它们到O点的距离如图所示,则由图中数据可知,重物由O点运动到C点,重力势能的减少量小于________J,动能的增加量等于________J(取三位有效数字)。
动能增量小于重力势能的减少量的原因主要是_________________________________________________________________________________________4、在验证机械能守恒定律的实验中,得到一条打了点的纸带,如图(甲)所示,点a为释放纸带前打的点,b、c、d 为连续的三点,由此能否验证机械能守恒定律?若得到一条纸带如图(乙)所示,a仍为释放纸带前打的点,c、d为连续的两点。
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
机械能守恒定律及其应用习题1.关于物体的机械能是否守恒的叙述,下列说法中正确的是 ( )A .做匀速直线运动的物体,机械能一定守恒B .做匀变速直线运动的物体,机械能一定守恒C .外力对物体所做的功等于零时,机械能一定守恒D .物体若只有重力做功,机械能一定守恒2. 下列说法中,正确的是 ( )A .物体克服重力做功,物体的重力势能一定增加,机械能可能不变B .物体克服重力做功,物体的重力势能一定增加,机械能一定增加C .重力对物体做正功,物体的重力势能一定减小,动能可能不变D .重力对物体做正功,物体的重力势能一定减小,动能一定增加3.如图,质量相同的球先后沿光滑的倾角分别为θ=30°,60°斜面下滑,达到最低点时,重力做功的瞬时功率是否相等?全过程重力做功的平均功率是否相等?(设初始高度相同)4.质量均为m的甲、乙、丙三个小球,在离地面高为h 处以相同的动能在竖直平面内分别做平抛、竖直下抛、沿光滑斜面下滑,则( )A .三者到达地面时的速率相同B .三者到达地面时的动能相同C .三者到达地面时的机械能相同D .以上说法都不正确5.下列实例(均不计空气阻力)中的运动物体,机械能守恒的应是 ( )A .被起重机吊起的货物正在加速上升B .物体水平抛出去C .物体沿粗糙斜面匀速下滑D .一个轻质弹簧上端固定,下端系一重物,重物沿竖直方向做上下振动6.一个人把重物加速上举到某一高度,下列说法正确的是 ( )A .物体所受的合外力对它所做的功等于物体机械能的增量B .物体所受合外力对它所做的功等于物体的动能的增量C .人对物体所做的功和重力对物体所做的功的代数和等于物体机械能的增量D .克服重力所做的功等于物体的重力势能的增量7.从离地高为H 的阳台上以速度v 竖直向上抛出质量为m的物体,它上升h 后又返回下落,最后落在地面上,则下列说法中不正确的是(不计空气阻力,以地面为参考面)( )A .物体在最高点时机械能为mg (H +h )B .物体落地时的机械能为mg (H +h )+21mv 2 C .物体落地时的机械能为mgH +21mv 2 D .物体在落回过程中,经过阳台时的机械能为mgH +21mv 2 8.质量为m 的小球,从离桌面高H 处由静止下落,桌面离地面高h ,如图1所示,设桌面处物体重力势能为零,空气阻力不计。
机械能守恒定律测试题1.下列说法正确的是 ( )A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒B .如果合外力对物体(或系统)做功为零,则机械能一定守恒C .物体沿固定光滑曲面自由下滑过程中,不计空气阻力,机械能一定守恒D .做匀加速运动的物体,其机械能可能守恒2.如图所示,木板O A 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( )A .支持力对物体做的总功为m g L s i n αB .摩擦力对物体做的总功为零C .木板对物体做的总功为零D .木板对物体做的总功为正功3、设一卫星在离地面高h 处绕地球做匀速圆周运动,其动能为1K E ,重力势能为1P E 。
与该卫星等质量的另一卫星在离地面高2h 处绕地球做匀速圆周运动,其动能为2K E ,重力势能为2P E 。
则下列关系式中正确的是( )A .1K E >2K EB .1P E >2P EC .2211P K P K E E E E +=+D .11K PE E +< 22K P E E +4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为g 54,在物体下落h 的过程中,下列说法正确的是( )A .物体动能增加了mgh 54B .物体的机械能减少了mgh 54C .物体克服阻力所做的功为mgh 51D .物体的重力势能减少了mgh5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为( )A .mgL μB .2mgL μC .2mgLμD .gL m M )(+μ6.如图所示,一轻弹簧左端固定在长木板2m 的左端,右端与小木块1m 连接,且1m 、2m 及 2m 与地面之间接触面光滑,开始时1m 和2m 均静止,现同时对1m 、2m 施加等大反向的 水平恒力1F 和2F ,从两物体开始运动以后的整个过程中,对1m 、2m 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( ) A .由于1F 、2F 等大反向,故系统机械能守恒B .由于1F 、2F 分别对1m 、2m 做正功,故系统动能不断增加C .由于1F 、2F 分别对1m 、2m 做正功,故系统机械能不断增加D .当弹簧弹力大小与1F 、2F 大小相等时,1m 、2m 的动能最大7.如图所示,滑雪者由静止开始沿斜坡从A点自由滑下,然后在水平面上前进至B 点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者经过A B 段的过程中,摩擦力所做的功( )A .大于mgL μB .小于mgL μC .等于mgL μD .以上三种情况都有可能8.嫦娥一号奔月旅程的最关键时刻是实施首次“刹车”减速.如图所示,在接近月球时,嫦娥一号将要利用自身的火箭发动机点火减速,以被月球引力俘获进入绕月轨道.这次减速只有一次机会,如果不能减速到一定程度,嫦娥一号将一去不回头离开月球和地球,漫游在更加遥远的深空;如果过分减速,嫦娥一号则可能直接撞击月球表面.该报道的图示如下.则下列说法正确的是( )A .实施首次“刹车”的过程,将使得嫦娥一号损失的动能转化为势能,转化时机械能守恒.B .嫦娥一号被月球引力俘获后进入绕月轨道,并逐步由椭圆轨道变轨到圆轨道.C .嫦娥一号如果不能减速到一定程度,月球对它的引力将会做负功.D .嫦娥一号如果过分减速,月球对它的引力将做正功,撞击月球表面时的速度将很大9、如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量都为m 。
1机械能守恒定律及其应用习题1.关于物体的机械能是否守恒的叙述,下列说法中正确的是()A .做匀速直线运动的物体,机械能一定守恒B .做匀变速直线运动的物体,机械能一定守恒C .外力对物体所做的功等于零时,机械能一定守恒D .物体若只有重力做功,机械能一定守恒 2.下列说法中,正确的是()A .物体克服重力做功,物体的重力势能一定增加,机械能可能不变B .物体克服重力做功,物体的重力势能一定增加,机械能一定增加C .重力对物体做正功,物体的重力势能一定减小,动能可能不变D .重力对物体做正功,物体的重力势能一定减小,动能一定增加 3.如图,质量相同的球先后沿光滑的倾角分别为θ=30°,60°斜面下滑,达到最低点时,重力做功的瞬时功率是否相等?全过程重力做功的平均功率是否相等?(设初始高度相同)4.质量均为m的甲、乙、丙三个小球,在离地面高为h 处以相同的动能在竖直平面内分别做平抛、竖直下抛、沿光滑斜面下滑,则()A .三者到达地面时的速率相同B .三者到达地面时的动能相同C .三者到达地面时的机械能相同D .以上说法都不正确5.下列实例(均不计空气阻力)中的运动物体,机械能守恒的应是() A .被起重机吊起的货物正在加速上升B .物体水平抛出去C .物体沿粗糙斜面匀速下滑D .一个轻质弹簧上端固定,下端系一重物,重物沿竖直方向做上下振动 6.一个人把重物加速上举到某一高度,下列说法正确的是() A .物体所受的合外力对它所做的功等于物体机械能的增量B .物体所受合外力对它所做的功等于物体的动能的增量C .人对物体所做的功和重力对物体所做的功的代数和等于物体机械能的增量D .克服重力所做的功等于物体的重力势能的增量7.从离地高为H 的阳台上以速度v 竖直向上抛出质量为m的物体,它上升h 后又返回下落,最后落在地面上,则下列说法中不正确的是(不计空气阻力,以地面为参考面)() A .物体在最高点时机械能为mg (H +h )B .物体落地时的机械能为mg (H +h )+21mv 2C .物体落地时的机械能为mgH +21mv 2D .物体在落回过程中,经过阳台时的机械能为mgH +21mv 28.质量为m 的小球,从离桌面高H 处由静止下落,桌面离地面高h ,如图1所示,设桌面处物体重力势能为零,空气阻力不计。
那么小球落地时的机械能为()A .mgHB .mghC .mg(H+h)D .mg(H-h)9.在高为H 的桌面上以速度V 水平抛出质量m 的物体,当物体落到距离地面高为h 处的A 点,如图2所示,设水平地面为零势能 参考平面,不计空气阻力,正确的说法是()图12A .物体在A 点的机械能为21mV 2+mgh B .物体在A 点的机械能为21mV 2+mgHC .物体在A 点的动能为21mV 2+mghD .物体在A 点的动能为21mV 2+mg (H -h )10..小明和小强在操场上一起踢足球,足球质量为m .如图所示,小明将足球以速度v 从地面上的A 点踢起,当足球到达离地面高度为h 的B 点位置时,取B 处为零势能参考面,不计空气阻力.则下列说法中正确的是()A.小明对足球做的功等于mv 2+mghB.小明对足球做的功等于mghC.足球在A 点处的机械能为mv 2D.足球在B 点处的动能为mv 2-mgh11.(2012福建卷)如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。
初始时刻,A 、B 处于同一高度并恰好静止状态。
剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块() A .速率的变化量不同 B .机械能的变化量不同C .重力势能的变化量相同D .重力做功的平均功率相同12.(2013全国卷大纲版).如图,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g 。
若物块上升的最大高度为H ,则此过程中,物块的()A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了mgH/213.(2012上海卷).位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动;若作用力变为斜面上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同。
则可能有( BD ) (A )F 2=F 1,v 1>v 2 (B )F 2=F 1,v 1<v 2(C )F 2>F 1,v 1>v 2(D )F 2<F 1,v 1<v 214.(2012安徽卷).如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力。
已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中()A.重力做功mgR 2B.机械能减少mgRF 2F 1O B R2P A3C.合外力做功mgRD.克服摩擦力做功mgR 2116.将一物体由地面竖直上抛,如果不计空气阻力,物体能够达到的最大高度为H ,当物体在上升过程中的某一位置时,它的动能是重力势能的2倍,则这一位置的高度为()A .32H B .2H C .3H D .4H17.两个质量相同的小球A 、B 分别用线悬在等高的O 1、O 2点,A 球的悬线比B 球的长,把两球的悬线均拉到水平后将无初速释放,则经最低点时(以悬点为零势能点)()A .A 球的速度大于B 球的速度B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能18.如图3所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A 、B ,将二球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A 、B 二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球在最低点时速度的大小是() A .A 球的速度大B .B 球的速度大C .A 、B 球的速度大小相等D .无法判定 19.物体由静止出发从光滑斜面顶端自由滑下,当所用时间是下滑到底端所用时间的一半时,物体的动能与势能(以斜面底端为零势能参考平面)之比为() A .1∶4B .1∶3C .1∶2D .1∶220.[2014·全国卷]一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示;当物块的初速度为时,上升的最大高度记为h .重力加速度大小为g .则物块与斜坡间的动摩擦因数和h 分别为( )A .tan θ和B.tan θ和 C .tan θ和D.tan θ和21.【2013江苏高考】.如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g.则上述过程中(A)物块在A 点时,弹簧的弹性势能等于12W mga μ-(B)物块在B 点时,弹簧的弹性势能小于32W mga μ-(C)经O 点时,物块的动能小于W mga μ-(D)物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能22.如图所示,质量m=2kg 的物体,从光滑斜面的顶端A 点以v 0=5m/s 的初速度滑下,在D 点与弹簧接触并将弹簧压缩到B 点时的速度为零,已知从A 到B 的竖直高度h=5m ,求弹簧的弹力对物体所做的功。
22.某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切.弹射装置将一个小物体(可视为质点)以v a =5m /s 的水平初速度由a 点弹出,从b 点进入轨道,依次经过“8002”后从p 点水平抛出。
小物体与地面ab 段间的动摩擦因数μ=0.3,不计其他机械能损失.已知ab 段长L=1.5m ,数字“0”的半径R=0.2m ,物体质量图34m=0.01kg,g=10m/s 2。
求:(1)小物体从p 点抛出后的水平射程。
(2)小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。
23.长为L 的均匀链条,放在光滑的水平桌面上,且使其长度的1/4垂在桌边,如图4所示,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为多大? 24.如图所示,跨过定滑轮的轻绳两端的物体A 和B 的质量分别为M 和m ,物体A 在水平面上.A 由静止释放,当B 沿竖直方向下落h 时,测得A 沿水平面运动的速度为v ,这时细绳与水平面的夹角为θ,试分析计算B 下降h 过程中,A 克服地面摩擦力做的功.(滑轮的质量和摩擦均不计)25.如图5所示,直角形的刚性杆被固定,水平和竖直部分均足够长。
质量分别为m 1和m 2的A 、B 两个有孔小球,串在杆上,且被长为L 的轻绳相连。
忽略两球的大小,初态时,B 处于杆竖直部分的最高点,认为A 、B 的位置在同一高度,且绳处于拉直状态。
现无初速地将A 、B 系统释放,忽略一切摩擦,试求B 球运动L/2时的速度v 2。
26.(2012福建卷)如图,用跨过光滑定滑轮的缆绳将海面上一搜失去动力的小船沿直线拖向岸边。
已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为f ,经过A 点时的速度大小为0v ,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d,缆绳质量忽略不计。
求: (1)小船从A 点运动到B 点的全过程克服阻力做的功f w ; (2)小船经过B 点时的速度大小1v ;(3)小船经过B 点时的加速度大小a27.(2012安徽卷).质量为0.1kg 的弹性球从空中某高度由静止开始下落,该下落过程对应的t v 图象如图所示。
球与水平地面相碰后离开地面时的速度大小为碰撞前的3/4。
该球受到的空气阻力大小恒为f ,取g =10m/s 2,求:(1)弹性球受到的空气阻力f 的大小;(2)弹性球第一次碰撞后反弹的高度h 。
28.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力; (3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件?V 2L/2LAB图5-27图5图4O v (m/0.5 4t (s。