第十六讲金属中自由电子气模型
- 格式:ppt
- 大小:545.50 KB
- 文档页数:27
一,金属自由电子气体模型1.1 经典电子论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。
2.独立电子近似:电子与电子之间的相互作用可以忽略不计。
外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。
)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。
4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。
202()1I j nev ne Sj E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩r1.2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。
1.3 Sommerfeld 的自由电子论1925年:泡利不相容原理1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。
电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。
在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。
本文将详细介绍电子行业金属中自由电子气模型的基本原理。
自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。
这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。
而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。
在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。
由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。
能带结构能带结构描述了金属中电子的能量分布情况。
根据自由电子气模型,电子能量随动量的变化形成能带。
在一维情况下,能带是连续的,电子在能带中可以具有任意动量。
而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。
根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。
因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。
能带结构可以分为导带和价带。
导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。
价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。
费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。
根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。
费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。
在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。
自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。
金属中的自由电子模型在金属中,原子固定在晶格中,共享其外层电子形成金属键。
与共价键不同,金属键不是由两个原子共享电子形成的,而是由整个金属晶体共享所有电子形成的。
因此,金属中的电子是高度移动的,可以在整个晶体中自由移动。
这种高度移动的电子被称为自由电子。
自由电子模型为了更好地理解金属中的自由电子,我们可以使用自由电子模型来进行说明。
自由电子模型假设金属中的所有原子共享它们的外层电子,形成一个巨大的电子气体。
这个电子气体中的电子可以看作是独立的,它们可以在整个晶体中自由移动,没有受到单个原子的束缚。
这种自由运动的电子是金属的导电电子,可以在金属中形成电流。
自由电子模型的一个重要假设是,电子在金属中形成一个连续的能带。
这个能带可以看作是一系列接近的能级,电子可以在其中自由移动。
不同的金属有不同的能带结构,这决定了它们的导电性和其他电学和热学性质。
在自由电子模型中,金属晶体的离子核可以看作是一个均匀的正电荷背景,与电子相互作用形成电子-正离子相互作用。
这种相互作用决定了自由电子的运动和能带结构。
能带结构能带结构是自由电子模型的一个重要概念。
在一个金属晶体中,由于相邻的原子之间形成了化学键,形成了共享电子的状态。
在这种情况下,电子的能量不再被离子核所束缚,而是自由移动。
它们可以在一系列接近的能级上自由移动,形成了能带结构。
概念上,我们可以将能带结构看作单位晶体内的所有电子的哈密顿量,哈密顿量代表所有电子的能量。
根据能带结构理论,所有电子都会填充到有限数量的能带中。
当一个能带被填充满时,下一个更高的能带就变成了空的,这个空的能带就可以被其他电子占据,从而继续导电。
导电性金属的导电性可以通过自由电子模型来解释。
在自由电子模型中,金属中的电子可以以任何方向自由移动,导致电流。
金属中的导电性与其能带结构有关。
金属中的电子被分为价带和导带,价带电子被紧密束缚在原子周围的状态中,电子的运动受到离子核的束缚。
而导带电子则在能带结构中自由移动,不受到束缚。