第14套量子力学自测题
- 格式:doc
- 大小:35.50 KB
- 文档页数:1
量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。
2. 描述态叠加原理的内容。
答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。
系统的态函数可以表示为这些可能状态的叠加。
3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。
4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。
5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。
6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。
7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。
8. 描述量子力学中的隧道效应。
答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。
这是量子力学中粒子波性质的体现。
9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。
10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
高等量子力学试题库一、简述题1. (§1.4)试以一维线性谐振子基函数所构成的空间为例,说明一般矢量空间的维数与位形空间维数的区别 2. (§2.4)试述幺正算符的性质 3. (§3.2)试述本征子空间的概念 4. (§3.3)试述厄米算符完备组的概念和建立厄米算符完备组的必要性 5. (§6.2)试述量子力学的基本原理 6. (§11)试述相互作用绘景与薛定谔绘景、海森伯绘景的区别和联系7. (§17.2)设氢原子的定态狄拉克方程为 ψψβαE r e mc P c =-+⋅)ˆ(212 ,为求氢原子哈密顿算符Hˆ 确切的本征矢量,试确定包含Hˆ在内的厄米算符完备组 8. (§19)若系统的哈密顿具有下列对称性(1)空间反演(2)空间平移(3)空间转动(4)SO(4)(5)时间平移,试分别给出这些对称性所带来的守恒量9. (§21.2)对于 Fermi 子,试讨论由时间反演引起的简并。
(提示:参阅曾书335页) 10. (§23)试述角动量耦合与3j ,6j 和9j 符号之间的关系11. (§23.7)对具有两个价电子的原子,设两电子的轨道和自旋角动量分别为21,L L 和21,S S,试在希尔伯特空间中给出两组可能的耦合基矢 12. (§34.4)试给出位置表象中的Hartree-Fock 方程并叙述其物理意义 二、证明题1. (§1.1)利用矢量空间的加法运算法则证明零矢量是唯一的2. (§1.1)利用矢量空间的数乘运算法则证明:若0=a ψ,则0=a 或0=ψ3. (§1.2)对于任意ψ和ϕ,试证:ϕψϕψ+≤+4. (§1.5)试证明:若三个右矢ψ、ϕ和χ满足χϕψ=+,则有χϕψ=+5. (§2.3)证明定理:在复矢量空间中,若算符A 对其定义域中的任意ψ满足0=ψψA ,则必有0=A6. (§2.4)证明定理:算符H 为厄米算符的充要条件是对其定义域中的所有矢量ψ满足=ψψH 实数7. (§2.4)证明:若I U U =+,则对任意ψ和ϕ,U 满足ϕψϕψ=U U ,进而证明,幺正变换不改变矢量的模8. (§2.4)设U 是幺正算符,试证明:在矢量空间中,若{}iν是一组基矢,则{iU ν也是一组基矢9. (§2.5)证明投影算符是厄米算符,并由全空间的投影算符证明基矢的完全性关系 10. (§3.1)证明:复空间中厄米算符的本征值都是实数11. (§3.1)证明:厄米算符属于不同本征值的两个本征矢量互相正交12. (§3.1)证明:若B A ,两算符相似,则二者有相同的本征值谱,且每一本征值都有相同的简并度 13. (§6.6)设i a 是算符A 属于本征值i a 的本征函数,即满足i i i a a a A =,且定义物理量在状态ψ中的平均值为ψψA A =。
量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C。
经典电磁场理论不适用于黑体辐射公式;D。
黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B。
Ψ归一化后,代表微观粒子出现的几率密度;C。
Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA。
偏振光子的一部分通过偏振片;B。
偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A。
一定也是该方程的一个解;B. 一定不是该方程的解;C. Ψ与一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。
粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以表示角动量算符,则对易运算为:BA。
ihB。
ihC.iD。
h7.如果算符、对易,且=A,则:BA。
一定不是的本征态;B. 一定是的本征态;C。
一定是的本征态;D。
∣Ψ∣一定是的本征态。
8.如果一个力学量与对易,则意味着:CA。
一定处于其本征态;B.一定不处于本征态;C。
一定守恒;D。
其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:BA。
能量守恒;B。
动量守恒;C。
角动量守恒;D。
宇称守恒。
10.如果已知氢原子的n=2能级的能量值为-3。
4ev,则n=5能级能量为:DA. -1。
51ev;B。
—0。
85ev;C。
-0。
378ev;D。
—0。
544ev11.三维各向同性谐振子,其波函数可以写为,且l=N—2n,则在一确定的能量(N+)h下,简并度为:BA. ;B。
;C。
N(N+1);D。
量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。
答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。
答案:演化三、简答题1. 简述量子力学中的叠加原理。
答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。
这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。
四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。
求该粒子的基态能量。
答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。
五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。
答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。
在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。
例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。
六、实验题1. 设计一个实验来验证海森堡不确定性原理。
答案:一个简单的实验设计是使用双缝干涉实验。
通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。
实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。
量子力学中的测量测试题量子力学是研究微观粒子行为的重要理论,其中测量是一个核心概念。
量子力学中的测量与经典物理中的测量有所不同,涉及到了波函数坍缩和不确定性原理等重要概念。
接下来,我将为您提供一些关于量子力学中的测量的测试题。
测试题一:波函数坍缩1. 量子力学中,什么是波函数坍缩?2. 波函数坍缩发生在量子体系的哪个阶段?3. 波函数坍缩后,量子体系处于什么样的状态?4. 请解释为什么波函数坍缩是量子力学中的一个奇特现象。
测试题二:不确定性原理1. 请简要介绍不确定性原理是什么?2. 不确定性原理对于测量中的哪些物理量起到了重要作用?3. 不确定性原理告诉我们什么?4. 请解释为什么存在不确定性原理。
测试题三:量子测量1. 在量子力学中,测量是如何定义的?2. 请解释测量对量子体系的影响。
3. 什么是观测算符?4. 您能否解释为什么测量结果是离散的?测试题四:测量算符1. 什么是测量算符?2. 测量算符可以描述哪些物理量的测量?3. 请解释为什么测量算符的本征值对应于测量的结果。
4. 您能否给出一个具体的测量算符的例子?测试题五:测量的统计解释1. 请简要介绍测量的统计解释。
2. 为什么在量子力学中,我们只能给出测量的概率?3. 请解释为什么在重复测量中,我们观察到的是统计规律而不是确定结果。
测试题六:电子自旋测量1. 电子自旋是什么?2. 请简要介绍电子自旋的测量是如何进行的。
3. 自旋上态和自旋下态分别对应于什么?4. 您能否解释为什么电子自旋测量的结果只能是自旋上态或自旋下态?以上是关于量子力学中的测量的测试题,希望能帮助您巩固对量子力学的理解。
量子力学中的测量是极其重要且复杂的一部分,对于深入理解量子世界至关重要。
通过这些测试题,您可以考察自己对于测量概念的掌握程度,并进一步拓展对量子力学的认识。
祝您学习进步!。
1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
物理量子力学测试题一、选择题1. 下列哪个不是量子力学的基本假设?A. 波粒二象性B. 起泡定理C. 波函数描述粒子状态D. 量子态叠加原理2. 量子力学中,希尔伯特空间用于描述什么?A. 粒子的位置B. 粒子的速度C. 粒子的能量D. 粒子的态3. 哪个物理量在量子力学中具有可观测性?A. 波函数B. 动量C. 能量D. 自旋4. 下列哪个不属于量子力学的基本方程?A. 薛定谔方程B. 海森堡方程C. 波动方程D. 狄拉克方程5. 阿贝尔玻色子和费米子之间的主要差异在于什么?A. 质量B. 自旋C. 电荷D. 荷E. 不相容性二、非选择题1. 描述波粒二象性的基本原理,并通过实例进行说明。
2. 量子力学的中心方程是什么?请解释该方程的物理意义。
3. 以双缝干涉实验为例,说明波函数叠加原理在量子力学中的应用。
4. 请描述斯特恩-格拉赫实验的结果,并解释实验对量子力学的贡献。
5. 量子力学中的狄拉克方程是什么?请解释该方程的意义和应用。
6. 请解释量子力学中的测量问题,并说明为什么测量会对量子系统的状态产生影响。
7. 通过解释量子力学中的不确定性原理,说明为什么在粒子的位置和动量之间存在一种不精确的关系。
8. 量子力学中的量子纠缠是什么?请举一个例子,说明量子纠缠的特性。
9. 请解释量子隧穿效应,并说明该效应在实际应用中的意义。
10. 量子力学的发展对现代科技产生了重要影响,请举例说明。
三、简答题1. 量子力学在哪些领域的应用取得了重要突破,并有何意义?2. 请解释玻尔-索末菲模型对量子力学的贡献,并指出其局限性。
3. 请解释量子纠缠的背后原理,并说明它的实际应用。
4. 请解释时间演化算符在量子力学中的作用。
5. 请解释量子力学中的波粒对偶原理,并说明其在实验中的应用。
6. 量子态叠加原理对于量子计算有何重要意义?请解释。
7. 请解释量子力学中的相干性,并说明相干性的实验验证方法。
8. 量子力学中的波函数坍缩是什么?请解释波函数坍缩对量子系统的影响。
量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。
它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。
b) 什么是波函数?波函数是描述量子体系的数学函数。
它包含了关于粒子的位置、动量、能量等信息。
波函数通常用符号ψ表示,并且可用于计算概率分布。
c) 什么是量子态?量子态是描述量子系统的状态。
它包含了有关系统性质的完整信息,并且根据量子力学规则演化。
量子系统可以处于多个量子态的叠加态。
d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。
例如,一个量子比特可以处于0态和1态的叠加态。
2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。
基态能级对应的主量子数为n=1。
基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。
实验装置包括一道光源、两个狭缝和一个光屏。
当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。
实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。
这种实验结果说明了光具有波动性,同时也具有粒子性。
2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。
入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。
答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。
求交叉区域的宽度。
答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。
根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。
将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。
量子力学复习提纲及考试试卷、答案量子力学复习提纲及考试试卷、答案1、德布罗意的物质波理论认为粒子的能量E 、动量P 与物质波的频率v 和波长λ的关系为( νh E = )、( n h pλ=或λh p = ) 。
2、量子力学中用(波函数)描写微观体系的状态。
3、()2,t r Ψ 是粒子t 时刻(在r 处的概率密度),()2,t p c是粒子t 时刻(具有动量p 的概率密度)。
(注:照最后一道大题写是概率分布函数的也算对了,但是只写是概率就不对)4、扫描隧道显微镜是利用(隧道效应)制成的。
5、氢原子电子的第n 个能级是(2n )度简并的。
6、F的本征值λ组成连续谱,则本征函数λφ的正交归一性表达式(书P70 ()λλτφφλλ'-='?δd *)。
7、坐标和动量的不确定关系式(()()4222 ≥??x p x 或()()2 ≥??x p x )。
8、如果两个算符对易,则这两个算符有组成完全系的(共同本征函数)。
二、求角动量算符的对易关系[]yx L L ?,?(5分)证明:书P77三、证明当氢原子处于基态时,电子在与核的距离为0a r =(玻尔半径)处出现的概率最大(10分)书P67四、证明厄米算符的属于不同本征值的两个本征函数相互正交。
(10分)证明:书P69 五、一粒子在一维势场,()0,,x a U x a x a x a ∞<-??=-≤≤??∞>?中运动,求粒子的能级和对应的波函数(20分)解:书P26例题六、设t=0 时,粒子的状态为??+=kx kx A x cos 21sin )(2ψ 求此时粒子的动量期望值和动能期望值。
(20分)解:书P92习题3.6七、(1)写出动量算符x p的本征函数()x x p ψ,本征方程。
求粒子处于()x x p ψ态时的坐标概率分布函数()2x x p ψ。
(2)求处于坐标算符x的本征态()()x x x x '-='δψ态中粒子的动量概率分布函数()2x x p c '。
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。
现代物理中的量子力学测试题量子力学作为现代物理学的重要分支,其理论和概念常常让人感到神秘而又深奥。
为了更好地理解和掌握量子力学的知识,我们设计了一系列的测试题,来检验大家对这一领域的理解程度。
一、选择题1、下列哪个实验证实了光具有粒子性?()A 双缝干涉实验B 光电效应实验C 迈克耳孙莫雷实验D 杨氏双缝实验2、量子力学中,描述微观粒子状态的函数是()A 波函数B 概率密度函数C 哈密顿量D 薛定谔方程3、对于一个处于定态的微观粒子,其能量具有()A 不确定性B 确定性C 可能连续也可能离散D 以上都不对4、量子力学中的“隧道效应”指的是()A 粒子在势垒中运动B 粒子可以穿过高于其能量的势垒C 粒子在势阱中运动D 粒子无法穿过势垒5、下列哪个物理量在量子力学中是不守恒的?()A 能量B 动量C 宇称D 电荷二、填空题1、海森堡不确定性原理表明,不能同时精确地测量一个粒子的_____和_____。
2、波函数的平方表示粒子在空间某点出现的_____。
3、量子力学中的算符通常作用在_____上。
4、薛定谔方程的一般形式为_____。
5、量子力学中,自旋是粒子的一种_____性质。
三、简答题1、请简要解释量子纠缠现象,并说明其在量子通信中的应用。
量子纠缠是指两个或多个粒子之间存在一种特殊的关联,即使它们相隔很远,对其中一个粒子的测量会瞬间影响到另一个粒子的状态。
在量子通信中,利用量子纠缠可以实现安全的密钥分发。
由于量子纠缠的特性,任何对传输信息的窃听都会被察觉,从而保证通信的安全性。
2、什么是量子隧穿效应?举例说明其在实际中的应用。
量子隧穿效应是指微观粒子能够穿越比它自身能量高的势垒的现象。
例如,在半导体器件中,电子可以通过量子隧穿效应穿过绝缘层,从而实现器件的功能。
在放射性衰变中,原子核中的粒子也可以通过量子隧穿效应逃出原子核。
3、简述波函数的物理意义,并说明为什么要对波函数进行归一化。
波函数描述了微观粒子的状态。
1 量子力学自测题(14)
一、(25分)质量m 的粒子,在阱宽为a 的非对称一维无限深方势阱中运动,当t=0时,粒子处于状态
)(4
1)(41)(21)0,(321x x x x ϕϕϕψ+-=
其中,)(x n ϕ为粒子的第n 个能量本征态。
(1)求t=0时能量的取值概率;
(2)求t>0时的波函数),(t x ψ;
(3)求t>0时能量的取值概率。
二、(20分)设体系的哈密算符改写为 22
2221ˆ21ˆ21ˆˆ21ˆz z y x L I L L L I H +⎪⎭⎫ ⎝⎛++= 利用适当的变换求出体系的能量本征值与相应的本征矢。
三、(25分)自旋为
2 ,固有磁矩为γγμ(s =为实常数)的粒子,处于均匀外磁场j B B 0=中。
设t=0时粒子处于2 =z s 的状态,求出0>t 时的波函数,进而计算z x s s ˆˆ与的平均值。
四、(25分)各向同性三维谐振子的哈密顿算符为
()()
222222221ˆˆˆ21ˆz y x p p p H z y x +++++=μωμ 加上微扰)(ˆzx yz xy W
++-=λ之后,求第一激发态的一级能量修正。