第8套量子力学自测题
- 格式:doc
- 大小:79.00 KB
- 文档页数:2
量子力学练习八解答1.z i j ,y i j ,z i j ,0,0,0 2.()21j j jm +,m jm ,0,1,2,12,32,52,⎧⎨⎩,,1,,m j j j =--+ 3 x y j ij ±1jm ±4.非耦合表象,()221122,,,z z j j j j;耦合表象,()22212,,,z j j j j5.能量本征值,本证态,量子跃迁,光谱分析,散射粒子的角分布,角关联,极化等, 波函数在r →∞处的渐进行为。
6.()ikrikzeef rψθ→+,1i dn j d ⎛⎫ ⎪Ω⎝⎭,i j 为入射粒子流密度,dn 为出射粒子数,d Ω为立体角,把入射粒子与靶相互作用V 看成微扰,即一级近似解中微扰项的波函数用零级近似平面波代替。
7.解:由ˆa p ⎛⎫=+⎪⎪⎭和ˆa p +⎫=-⎪⎪⎭可得)ˆxa a +=+则()11ˆ11n n n n n n x n x n a ann a n n a n n n +'+''-+''==+''⎤=+⎦⎤=-++⎦⎤=+⎦()()()2222222ˆ22212n n n n n n n n x n xn n a ann a n n aa n n a a n n a n n μωμωδμω+'+++'''-+''==+⎡⎤''''=+++⎢⎥⎣⎦⎤=+++⎦8.(1)证明:))[][]11ˆˆˆˆ,,,122a a x ip x ip x ip ip x +⎤⎡⎤=-+=-=-⎥⎣⎦⎦ [],,,a a a a a a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦(2)可以求得:)x aa +=+)ˆpaa +=-系统Hamilton 为()()()()()22221111ˆˆˆ222211121222Hp x a a a a a a aaa a a a ++++++⎡⎤=+=--++⎢⎥⎣⎦=+=+=+ 9.解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H Ha H H H Hb H HH ab**⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E又二级能量公式是: ∑≠-=k n n nknk kEEH E)0()0(2')2()(所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:)0(3)0(12)0(3)0(12'31)0(2)0(12'21)0()0(12'1)2(1)()()(E E a EEH EEH EEH E nnn -=-+-=-=∑)0(3)0(22)0(1)0(22'32)0(1)0(32'12)0()0(22'2)2(2)()()(E E bE E H E E H E E H E nnn -=-+-=-=∑)0(2)0(32)0(1)0(32)0(1)0(32'13)0(2)0(32'23)0()0(32'3)2(3)()()(E E b E E a E E H EEH EEH Ennn -+-=-+-=-=∑。
高等量子力学试题库一、简述题1. (§1.4)试以一维线性谐振子基函数所构成的空间为例,说明一般矢量空间的维数与位形空间维数的区别 2. (§2.4)试述幺正算符的性质 3. (§3.2)试述本征子空间的概念 4. (§3.3)试述厄米算符完备组的概念和建立厄米算符完备组的必要性 5. (§6.2)试述量子力学的基本原理 6. (§11)试述相互作用绘景与薛定谔绘景、海森伯绘景的区别和联系7. (§17.2)设氢原子的定态狄拉克方程为 ψψβαE r e mc P c =-+⋅)ˆ(212 ,为求氢原子哈密顿算符Hˆ 确切的本征矢量,试确定包含Hˆ在内的厄米算符完备组 8. (§19)若系统的哈密顿具有下列对称性(1)空间反演(2)空间平移(3)空间转动(4)SO(4)(5)时间平移,试分别给出这些对称性所带来的守恒量9. (§21.2)对于 Fermi 子,试讨论由时间反演引起的简并。
(提示:参阅曾书335页) 10. (§23)试述角动量耦合与3j ,6j 和9j 符号之间的关系11. (§23.7)对具有两个价电子的原子,设两电子的轨道和自旋角动量分别为21,L L 和21,S S,试在希尔伯特空间中给出两组可能的耦合基矢 12. (§34.4)试给出位置表象中的Hartree-Fock 方程并叙述其物理意义 二、证明题1. (§1.1)利用矢量空间的加法运算法则证明零矢量是唯一的2. (§1.1)利用矢量空间的数乘运算法则证明:若0=a ψ,则0=a 或0=ψ3. (§1.2)对于任意ψ和ϕ,试证:ϕψϕψ+≤+4. (§1.5)试证明:若三个右矢ψ、ϕ和χ满足χϕψ=+,则有χϕψ=+5. (§2.3)证明定理:在复矢量空间中,若算符A 对其定义域中的任意ψ满足0=ψψA ,则必有0=A6. (§2.4)证明定理:算符H 为厄米算符的充要条件是对其定义域中的所有矢量ψ满足=ψψH 实数7. (§2.4)证明:若I U U =+,则对任意ψ和ϕ,U 满足ϕψϕψ=U U ,进而证明,幺正变换不改变矢量的模8. (§2.4)设U 是幺正算符,试证明:在矢量空间中,若{}iν是一组基矢,则{iU ν也是一组基矢9. (§2.5)证明投影算符是厄米算符,并由全空间的投影算符证明基矢的完全性关系 10. (§3.1)证明:复空间中厄米算符的本征值都是实数11. (§3.1)证明:厄米算符属于不同本征值的两个本征矢量互相正交12. (§3.1)证明:若B A ,两算符相似,则二者有相同的本征值谱,且每一本征值都有相同的简并度 13. (§6.6)设i a 是算符A 属于本征值i a 的本征函数,即满足i i i a a a A =,且定义物理量在状态ψ中的平均值为ψψA A =。
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。
物理量子力学测试题一、选择题1. 下列哪个不是量子力学的基本假设?A. 波粒二象性B. 起泡定理C. 波函数描述粒子状态D. 量子态叠加原理2. 量子力学中,希尔伯特空间用于描述什么?A. 粒子的位置B. 粒子的速度C. 粒子的能量D. 粒子的态3. 哪个物理量在量子力学中具有可观测性?A. 波函数B. 动量C. 能量D. 自旋4. 下列哪个不属于量子力学的基本方程?A. 薛定谔方程B. 海森堡方程C. 波动方程D. 狄拉克方程5. 阿贝尔玻色子和费米子之间的主要差异在于什么?A. 质量B. 自旋C. 电荷D. 荷E. 不相容性二、非选择题1. 描述波粒二象性的基本原理,并通过实例进行说明。
2. 量子力学的中心方程是什么?请解释该方程的物理意义。
3. 以双缝干涉实验为例,说明波函数叠加原理在量子力学中的应用。
4. 请描述斯特恩-格拉赫实验的结果,并解释实验对量子力学的贡献。
5. 量子力学中的狄拉克方程是什么?请解释该方程的意义和应用。
6. 请解释量子力学中的测量问题,并说明为什么测量会对量子系统的状态产生影响。
7. 通过解释量子力学中的不确定性原理,说明为什么在粒子的位置和动量之间存在一种不精确的关系。
8. 量子力学中的量子纠缠是什么?请举一个例子,说明量子纠缠的特性。
9. 请解释量子隧穿效应,并说明该效应在实际应用中的意义。
10. 量子力学的发展对现代科技产生了重要影响,请举例说明。
三、简答题1. 量子力学在哪些领域的应用取得了重要突破,并有何意义?2. 请解释玻尔-索末菲模型对量子力学的贡献,并指出其局限性。
3. 请解释量子纠缠的背后原理,并说明它的实际应用。
4. 请解释时间演化算符在量子力学中的作用。
5. 请解释量子力学中的波粒对偶原理,并说明其在实验中的应用。
6. 量子态叠加原理对于量子计算有何重要意义?请解释。
7. 请解释量子力学中的相干性,并说明相干性的实验验证方法。
8. 量子力学中的波函数坍缩是什么?请解释波函数坍缩对量子系统的影响。
量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。
它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。
b) 什么是波函数?波函数是描述量子体系的数学函数。
它包含了关于粒子的位置、动量、能量等信息。
波函数通常用符号ψ表示,并且可用于计算概率分布。
c) 什么是量子态?量子态是描述量子系统的状态。
它包含了有关系统性质的完整信息,并且根据量子力学规则演化。
量子系统可以处于多个量子态的叠加态。
d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。
例如,一个量子比特可以处于0态和1态的叠加态。
2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。
基态能级对应的主量子数为n=1。
基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。
实验装置包括一道光源、两个狭缝和一个光屏。
当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。
实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。
这种实验结果说明了光具有波动性,同时也具有粒子性。
量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。
下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。
答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。
答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。
答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。
这一现象在经典物理学中是不可能发生的。
一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。
6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。
答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。
这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。
四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。
答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。
2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。
入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。
答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。
求交叉区域的宽度。
答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。
根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。
将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。
t8联考试题及答案物理一、选择题(每题3分,共30分)1. 以下哪个选项是描述光的波动性的?A. 直线传播B. 反射C. 折射D. 干涉和衍射答案:D2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体在水平面上受到一个恒定的力作用,以下哪个选项描述了物体的加速度?A. 与力成正比B. 与力成反比C. 与力和质量的乘积成正比D. 与力和质量的乘积成反比答案:A4. 以下哪个选项是描述电磁感应现象的?A. 电流通过导线产生磁场B. 磁场变化产生电流C. 电流变化产生磁场D. 磁场产生电流答案:B5. 根据能量守恒定律,以下哪个选项是正确的?A. 能量可以在不同形式之间转换B. 能量可以被创造或消灭C. 能量在封闭系统中保持不变D. 能量在开放系统中可以增加或减少答案:A6. 以下哪个选项是描述相对论效应的?A. 时间膨胀B. 质量不变C. 长度不变D. 速度不变答案:A7. 以下哪个选项是描述波粒二象性的?A. 光只有波动性B. 光只有粒子性C. 光既有波动性也有粒子性D. 光既没有波动性也没有粒子性答案:C8. 以下哪个选项是描述热力学第一定律的?A. ΔU = Q - WB. ΔU = Q + WC. ΔU = Q - PD. ΔU = Q + P答案:B9. 以下哪个选项是描述理想气体状态方程的?A. PV = nRTB. PV = nTC. PV = nRD. PV = RT答案:A10. 以下哪个选项是描述量子力学的基本原理之一?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的位置和动量可以同时精确预测D. 粒子的位置和动量可以同时精确计算答案:B二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比,公式为 F = _______。
t8物理试题及答案一、选择题(每题3分,共30分)1. 下列关于光的传播,说法正确的是:A. 光在真空中传播速度最快B. 光在任何介质中传播速度都比在真空中慢C. 光在所有介质中传播速度相同D. 光在空气中传播速度比在水中快答案:A2. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不相等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不相等,方向相同答案:A3. 以下哪种情况不会改变物体的机械能?A. 物体在斜面上匀速下滑B. 物体在水平面上匀速运动C. 物体在竖直方向上自由下落D. 物体在水平面上受到摩擦力作用答案:B4. 根据热力学第一定律,下列说法正确的是:A. 能量守恒B. 能量可以被创造C. 能量可以被消灭D. 能量既不能被创造也不能被消灭答案:A5. 以下哪种物质是绝缘体?A. 铜B. 铁C. 橡胶D. 盐水答案:C6. 根据欧姆定律,下列说法正确的是:A. 电流与电压成正比B. 电流与电阻成正比C. 电流与电压成反比D. 电流与电阻成反比答案:A7. 电磁波的传播不需要介质,这是因为:A. 电磁波是横波B. 电磁波是纵波C. 电磁波是粒子流D. 电磁波是能量流答案:A8. 根据相对论,下列说法正确的是:A. 质量是不变的B. 质量会随着速度的增加而增加C. 时间是不变的D. 时间会随着速度的增加而变慢答案:B9. 以下哪种现象是超导现象?A. 电阻为零B. 电阻大于零C. 电阻小于零D. 电阻等于零答案:A10. 根据量子力学,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的位置和动量可以同时精确预测D. 粒子的位置和动量可以同时精确控制答案:B二、填空题(每题2分,共20分)1. 光在真空中的传播速度是_____m/s。
答案:3×10^82. 牛顿第三定律表明,作用力和反作用力大小______,方向______。
量子力学自测题8
一、填空题(本题25分)
1.自由粒子平面波函数ikx ce x =)(ψ的动量不确定度=∆p ,坐标不确定度=∆x 。
2.波函数kx x cos )(=ψ是否自由粒子的能量本征态?答: 。
如果是,能量本征值是 。
该波函数是否是动量本征态?答: ,因为 。
3.设B A
ˆˆ是两个互为不对易的厄米算符。
在下列算符 (1)B A ˆ,ˆ; (2)B A ˆˆ—A B ˆˆ; (3)2
ˆA ; (4)B A ˆˆ+A B ˆˆ 中,算符 和 的本征值必为实数。
4.设两个电子散射波的自旋波函数()↓↑+↑↓=
2
1χ,则散射波的空间波函数应为 。
因此微分散射截面 。
5.设一个二能级体系的两个能量本征值分别为E 1和E 2,相应的本征矢量为21n n 和。
则在能量表象中,体系Hamilton 量的矩阵表示是 ,体系的可能状态是 ,在各可能状态下,能量的可能测值是 ,相应的几率是 。
二、(本题15分)
1.已知在坐标表象中,自由粒子的坐标本征函数为 )()(0x x x -=δψ
求在动量表象中坐标的本征函数。
2.氢原子中的电子在径向坐标dr r r +→的球壳内出现的几率为
dr r r R dr r P nl nl 22)()(=。
已知,0/2/30
1012)(a r e a r R -⎪⎪⎭⎫ ⎝⎛=,求IS 电子的径向几率最大的
位置。
三、(本题15分) 1.求证:iz y +=1ψ,ix z +=2ψ,iy x +=3ψ分别为角动量算符z
y x l l l ˆ,ˆ,ˆ的本征值为 的本征态。
2.试证明:在电子的任意自旋态⎪⎪⎭
⎫ ⎝⎛=b a χ下,只要22b a =,则自旋角动量z
S ˆ的平均值必为零。
四、(本题15分)
1.已知),())((B A i B A B A ⨯⋅+⋅=⋅⋅σσσ其中,A 、B 为与Pauli 矩阵z y x σσσ,,对易的任意两个矢量算符。
试证明:
22)ˆ(p p
=⋅σ,⋅-=⋅σσ 22)(l l l 其中,p 为三维动量, l 为三维角动量。
2.设力学量A
ˆ(不显含时间)为守恒量。
求证:A ˆ的平均值不随时间改变,即0=dt
A d 五、(本题15分)
已知一维谐振子处于基态,坐标的不确定度 l x x x =+=∆2)(
求该谐振子跃迁到第一激发态所需能量。
六、(本题15分)
设一电子在沿x 方向的均匀磁场B 中运动。
在t=0时,电子的自旋向z 轴的正向极化。
求:
(1)在任意时刻t ,电子的自旋波函数。
(2)z
y x S 、S 、S ˆˆˆ的平均值。
(3)z
S ˆ的测值为2/ 和—2/ 的几率。