课前基础巩固
◈ 知识聚焦 ◈
任意一条直线
垂线
垂面
类别
语言表述
图形表示
符号语言
应用
判定
根据定义,证明一条直线垂直于一个平面内的任意一条直线
b是平面α内任意一条直线, a⊥b⇒a⊥α
证明直线和平面垂直
如果一条直线与一个平面内的 垂直,那么该直线与此平面垂直
⇒l⊥α
(2)直线与平面垂直的判定与性质
课堂考点探究
探究点一 垂直关系的基本问题
[思路点拨]画出图形,利用线面平行、线面垂直的判定定理,面面垂直的判定定理和性质定理逐一判断;
B
课堂考点探究
[解析] 对于A,如图①,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则由线面平行的判定定理可得a∥β,故A中说法正确;由A可知,B中说法错误;对于C,如图②,设α∩γ=a,β∩γ=b,在γ内直线a,b外任取一点O,作OA⊥a,因为
[解析]如图②,延长AO,BO,CO,分别交BC,AC,AB于点H,D,G.∵PC ⊥PA,PB⊥PC,PA∩PB=P,PA,PB⊂平面PAB,∴PC⊥平面PAB,又AB ⊂平面PAB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,PO,PC⊂平面POC, ∴AB⊥平面POC,又CG⊂平面POC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.
例1 (1)下列说法中错误的是( ) A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β