概率的基本性质(经典)
- 格式:ppt
- 大小:1.38 MB
- 文档页数:19
一、知识要点及方法1、基本概念:(2)若A∩B为不可能事件,即A∩B=ф,即不可能同时发生的两个事件,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件A与事件B互为对立事件;概率加法公式:当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A 不发生,对立事件互斥事件的特殊情形。
二、试题课时训练1.如果事件A、B互斥,记错误!、错误!分别为事件A、B的对立事件,那么()A.A∪B是必然事件B.A∪错误!是必然事件C.错误!与错误!一定互斥D.A与错误!一定不互斥2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,由甲、乙两人下成和棋的概率为()A.60%B.30%C.10% D.50%4.掷一枚骰子的试验中,出现各点的概率均为错误!。
10.1.4 概率的基本性质课标要求素养要求通过实例,理解概率的性质,掌握随机事件概率的运算法则.通过具体实例,抽象出概率的性质,掌握概率的运算方法,发展数学抽象及数学运算素养.教材知识探究甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3.问题甲获胜的概率是多少?提示甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3,则甲胜的概率是p=0.6-0.3=0.3.概率的基本性质一般地,概率有如下性质:概率的基本性质是解决与概率问题有关问题的重要依据,望同学们一定要牢记性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B). 性质5:如果A⊆B,那么P(A)≤P(B).性质6:设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).教材拓展补遗[微判断]1.任一事件的概率总在(0,1)内.(×)2.不可能事件的概率不一定为0.(×)3.必然事件的概率一定为1.(√)4.某产品分甲、乙、丙三级,其中乙、丙两级属于次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查一件,恰好是正品的概率为0.96.(√)5.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于23.(√)提示 任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1,故1、2错. [微训练]1.在掷骰子的游戏中,向上的数字是5或6的概率是( ) A.16B.13C.12D.1解析 事件“向上的数字是5”与事件“向上的数字是6”为互斥事件,且二者发生的概率都是16,所以“向上的数字是5或6”的概率是16+16=13. 答案 B2.事件A 与B 是对立事件,且P (A )=0.2,则P (B )=________.解析 因A 与B 是对立事件,所以P (A )+P (B )=1,即P (B )=1-P (A )=0.8. 答案 0.83.事件A 与B 是互斥事件,P (A )=0.2,P (B )=0.5,求P (A ∪B ). 解 因为A 与B 互斥,故P (A ∪B )=P (A )+P (B )=0.2+0.5=0.7. [微思考]1.在同一试验中,设A ,B 是两个随机事件,若A ∩B =∅,则称A 与B 是两个对立事件,此说法对吗?提示 不对,若A ∩B =∅,仅能说明A 与B 的关系是互斥的,只有A ∪B 为必然事件,A ∩B 为不可能事件时,A 与B 才互为对立事件.2.在同一试验中,对任意两个事件A ,B ,P (A ∪B )=P (A )+P (B )一定成立吗? 提示 不一定.只有A 与B 互斥时,P (A ∪B )=P (A )+P (B )才成立.题型一 互斥事件概率公式的应用应用公式时要首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和【例1】(1)抛掷一个骰子,观察出现的点,设事件A为“出现1点”,B为“出现2点”.已知P(A)=P(B)=16,求出现1点或2点的概率.(2)盒子里装有6只红球,4只白球,从中任取3只球.设事件A表示“3只球中有1只红球,2只白球”,事件B表示“3只球中有2只红球,1只白球”.已知P(A)=310,P(B)=12,求这3只球中既有红球又有白球的概率.解(1)设事件C为“出现1点或2点”,因为事件A、B是互斥事件,由C=A∪B可得P(C)=P(A)+P(B)=16+16=13,所以出现1点或出现2点的概率是13.(2)因为A、B是互斥事件,所以P(A∪B)=P(A)+P(B)=310+12=45,所以这3只球中既有红球又有白球的概率是4 5.规律方法(1)公式P(A∪B)=P(A)+P(B),只有当A、B两事件互斥时才能使用,如果A、B不互斥,就不能应用这一公式;(2)解决本题的关键是正确理解“A∪B”的意义.【训练1】在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:(1)[10,16);(2)[8,12);(3)[14,18).解记该河流这一处的年最高水位(单位:m)在[8,10),[10,12),[12,14),[14,16),[16,18)分别为事件A,B,C,D,E,且彼此互斥.(1)P(B∪C∪D)=P(B)+P(C)+P(D)=0.28+0.38+0.16=0.82.(2)P(A∪B)=P(A)+P(B)=0.1+0.28=0.38.(3)P(D∪E)=P(D)+P(E)=0.16+0.08=0.24.所以年最高水位(单位:m)在[10,16),[8,12),[14,18)的概率分别为0.82,0.38,0.24.题型二对立事件概率公式的应用若题中含有“至多”“至少”等字眼时,通常考虑用对立事件公式求解概率 【例2】 甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求: (1)甲获胜的概率; (2)甲不输的概率.解 (1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率p =1-12-13=16.即甲获胜的概率是16.(2)法一 设事件A 为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23.法二 设事件A 为“甲不输”,可看成是“乙获胜”的对立事件,所以P (A )=1-13=23.即甲不输的概率是23.规律方法 对立事件也是比较重要的事件,利用对立事件的概率公式求解时,必须准确判断两个事件确实是对立事件时才能应用.【训练2】 某战士射击一次,未中靶的概率为0.05,求中靶的概率.解 某战士射击一次,要么中靶,要么未中靶,因此,设某战士射击一次,“中靶”为事件A ,则其对立事件B 为“未中靶”,于是P (A )=1-P (B )=1-0.05=0.95. 所以某战士射击一次,中靶的概率是0.95. 题型三 概率性质的综合应用【例3】 某初级中学共有学生2 000名,各年级男、女生人数如下表:0.19. (1)求x 的值;(2)现用分层随机抽样的方法在全校抽取48名学生,问:应在九年级中抽取多少名?每个个体被抽到的可能性都是nN(3)已知y ≥245,z ≥245,求九年级中女生比男生少的概率. 解 (1)∵x2 000=0.19,∴x =380.(2)九年级人数为y +z =2 000-(373+377+380+370)=500,现用分层随机抽样的方法在全校抽取48名学生,应在九年级抽取的人数为5002 000×48=12.(3)设九年级女生比男生少为事件A ,则A -为九年级女生比男生多或九年级男生和女生同样多.九年级女生数、男生数记为(y ,z ),由(2)知y +z =500,y ,z ∈N .满足题意的所有样本点是(245,255),(246,254),(247,253),…,(255,245),共11个,事件A -包含的样本点是(250,250),(251,249),(252,248),(253,247),(254,246),(255,245),共6个.∴P (A -)=611.因此,P (A )=1-611=511.规律方法 求某些较复杂事件的概率,通常有两种方法:一是将所求事件的概率转化成一些彼此互斥的事件的概率的和;二是先求此事件的对立事件的概率,再用公式求此事件的概率.这两种方法可使复杂事件概率的计算得到简化.【训练3】 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.(1)求他乘火车或乘飞机去的概率; (2)求他不乘轮船去的概率;(3)如果他乘交通工具的概率为0.5,请问他有可能乘哪种交通工具?解 (1)记“他乘火车”为事件A ,“他乘轮船”为事件B ,“他乘汽车”为事件C ,“他乘飞机”为事件D .这四个事件两两不可能同时发生,故它们彼此互斥,所以P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7. 即他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为p ,则 p =1-P (B )=1-0.2=0.8,所以他不乘轮船去的概率为0.8.(3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.一、素养落地1.通过学习概率的基本性质提升数学抽象素养.通过随机事件概率的运算培养数学运算素养.2.互斥事件概率的加法公式是一个基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(A∪B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.二、素养训练1.若A,B是互斥事件,P(A)=0.2,P(A∪B)=0.5,则P(B)等于()A.0.3B.0.7C.0.1D.1解析∵A,B是互斥事件,∴P(A∪B)=P(A)+P(B)=0.5,∵P(A)=0.2,∴P(B)=0.5-0.2=0.3.故选A.答案 A2.抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则()A.A⊆BB.A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3解析A+B表示A与B的和事件,即A+B表示向上的点数是1或2或3,故选C.答案 C3.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=()A.0.3B.0.6C.0.7D.0.8解析因为A与B互斥,B与C对立,所以P(B)=1-P(C)=0.4,P(A+B)=P(A)+P(B)=0.7.答案 C4.小明需要从甲城市编号为1~14的14个工厂或乙城市编号为15~32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A,“小明在乙城市且编号为3的倍数的工厂实习”为事件B,则P(A+B)=()A.325 B.58 C.916 D.14解析P(A+B)=P(A)+P(B)=1432+632=58.答案 B基础达标一、选择题1.若A,B是互斥事件,则()A.P(A∪B)<1B.P(A∪B)=1C.P(A∪B)>1D.P(A∪B)≤1解析∵A,B互斥,∴P(A∪B)=P(A)+P(B)≤1(当A,B对立时,P(A∪B)=1). 答案 D2.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为()A.0.5B.0.3C.0.6D.0.9解析此射手在一次射击中不超过8环的概率为1-0.2-0.3=0.5,故选A.答案 A3.从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13 B.14 C.16 D.112解析 从1,2,3,4中选取两个不同数字组成所有两位数为:12,21,13,31,14,41,23,32,24,42,34,43,共12个样本点,其中能被4整除的有:12,24,32,共3个样本点,所以这个两位数能被4整除的概率为p =312=14. 答案 B4.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动,有16种不同的选法,周六、周日都有同学参加公益活动有16-2=14(种)不同的选法,所以所求的概率为1416=78. 答案 D5.下列四种说法:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B ); ③若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1; ④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件. 其中错误的个数是( ) A.0B.1C.2D.3解析 对立事件一定是互斥事件,故①对;只有A ,B 为互斥事件时才有P (A +B )=P (A )+P (B ),故②错; 因A ,B ,C 并不一定包括随机试验中的全部样本点, 故P (A )+P (B )+P (C )并不一定等于1,故③错; 若A ,B 不互斥,尽管P (A )+P (B )=1, 但A ,B 不是对立事件,故④错. 答案 D 二、填空题6.口袋中有若干个大小形状完全相同的红球、黄球与蓝球,随机摸出一球,是红球的概率为0.45,是红球或黄球的概率为0.64,则摸出是红球或蓝球的概率是________.解析 由题意,得摸出是黄球的概率为0.64-0.45=0.19, ∴摸出是红球或蓝球的概率为:1-0.19=0.81. 答案 0.817.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.解析 由题意知事件“甲夺得冠军”与“乙夺得冠军”互斥,故所求事件的概率为37+14=1928. 答案 19288.向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.025,炸中第二、三个军火库的概率均为0.1,只要炸中一个,另两个也会发生爆炸,三个军火库都爆炸的概率为________.解析 设A 、B 、C 分别表示炸弹炸中第一、第二、第三军火库这三个事件,D 表示三个军火库都爆炸,则P (A )=0.025,P (B )=0.1,P (C )=0.1.其中A 、B 、C 互斥,故P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225. 答案 0.225 三、解答题9.一名射击运动员在一次射击中射中10环,9环,8环,7环,7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中: (1)射中10环或9环的概率; (2)至少射中7环的概率; (3)射中环数小于8环的概率.解 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A ,B ,C ,D ,E ,可知它们彼此之间互斥,且P (A )=0.24,P (B )=0.28,P (C )=0.19,P (D )=0.16,P (E )=0.13.(1)P (射中10环或9环)=P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.(2)事件“至少射中7环”与事件E “射中7环以下”是对立事件,则P (至少射中7环)=1-P (E )=1-0.13=0.87. 所以至少射中7环的概率为0.87.(3)事件“射中环数小于8环”包含事件D “射中7环”与事件E “射中7环以下”两个事件,则P (射中环数小于8环)=P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29.10.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.解 从袋中任取一球,记事件“取到红球”“取到黑球”“取到黄球”和“取到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 显然是两两互斥的.由题意得⎩⎪⎨⎪⎧P (A )=13,P (B +C )=512,P (C +D )=512,P (A +B +C +D )=1, 则⎩⎪⎨⎪⎧P (B )+P (C )=512,P (C )+P (D )=512,13+P (B )+P (C )+P (D )=1,解得⎩⎪⎨⎪⎧P (B )=14,P (C )=16,P (D )=14,故取到黑球的概率是14,取到黄球的概率是16,取到绿球的概率是14.能力提升11.设事件A 的对立事件为B ,已知事件B 的概率是事件A 的概率的2倍,则事件A 的概率是________.解析 由题意得⎩⎨⎧P (A )+P (B )=1,P (B )=2P (A ),解得P (A )=13,P (B )=23. 答案 1312.某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:(1)求有4人或5(2)求至少有3人外出家访的概率.解 (1)设派出2人及以下为事件A ,3人为事件B ,4人为事件C ,5人为事件D ,6人及以上为事件E ,则有4人或5人外出家访的事件为事件C 或事件D ,C ,D 为互斥事件,根据互斥事件概率的加法公式可知,P (C +D )=P (C )+P (D )=0.3+0.1=0.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,p =1-P (A )=1-0.1=0.9.创新猜想13.(多填题)掷一枚骰子的试验中,出现各点的概率为16,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件B -的概率为P (B -)=________,事件A +B - (B -表示事件B 的对立事件)发生的概率为________.解析 由题意知,B -表示“大于或等于5的点数出现”,则P (B -)=26=13,事件A 与事件B -互斥,由概率的加法计算公式可得P (A +B -)=P (A )+P (B -)=26+26=46=23. 答案 13 2314.(多填题)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是________,任取出2粒恰好不同色的概率是________.解析易知事件“从中取出2粒都是黑子”和“从中取出2粒都是白子”为互斥事件,故所求的概率为17+1235=1735.不同色的概率为1-1738=1835.答案17351835。
概率的基本性质事件的关系:1.包含:如果当事件A发生时,事件B一定发生,则B⊇A ( 或A⊆B );注:不可能事件记作Φ,任何事件都包含不可能事件.2.相等事件:若B⊇A,且A⊇B,则称事件A与事件B相等,记作A=B.3.和事件:当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作 C=A∪B(或A+B).4.积事件:当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB)5.互斥事件:两个事件的交事件为不可能事件,即A∩B=Ф,此时,称事件A与事件B 互斥,其含义为事件A与事件B在同一次试验中不会同时发生.6.对立事件:若A∩B=Ф,A B=必然事件,则事件A与事件B互为对立事件,即事件A与事件B在同一次试验中有且只有一个发生.7. 概率的加法公式:若事件A与事件B互斥,则(A∪B)=P(A)+ P(B)8. 对立事件公式:若事件A与事件B互为对立事件,则P(A)+P(B)=1.9. 相互独立事件:若P(AB)=P(A)P(B),则称事件A与事件B为相互独立事件,即事件A是否发生对事件B的概率没有影响。
例1 某射手进行射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例2 一个人打靶时连续射击两次,下列各事件是“至少有一次中靶”的互斥事件的是()A.至多有一次中靶 B.两次都中靶C. 只有一次中靶D. 两次都不中靶例3 某射手连续射击两次,试判断下列事件的关系?事件A:第一次命中环数大于7环;事件B:第二次命中环数为10环;事件C:第一次命中环数都小于6环;事件D:两次命中环数都小于6环.练习1.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有一名女生的概率为.A,两个口袋, A袋中装有4个白球, 2个黑球; B袋中装有3个白球, 4个黑球. 从2.有BA,两袋中各取2个球交换之后, 则A袋中装有4个白球的概率为.B3. 甲、乙二人独立地解决同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么其中至少一人解决这个问题的概率是( )A.P 1+P 2B.P 1·P 2C.1-P 1P 2D.1-(1-P 1)·(1-P 2)4. 一个电路上装有甲、乙两根熔丝,甲熔断的概率是0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少一根熔断的概率为 .5. 10颗骰子同时掷出,并掷5次,至少有一次全部出现一个点的概率为 .6. 有三个形状相同的小罐,在第一罐中有2个白球和1个黑球,在第二罐中有3个白球和1个黑球,在第三个罐中有2个白球和2个黑球,从中各摸一个球,3个球都不是白球的概率为____ _.7. 一个袋中有带标号的7个白球,3个黑球.事件A :从袋中摸出两个球,先摸的是黑球,后摸的是白球.那么事件A 发生的概率为_______8. 某市派出甲, 乙两只球队参加全省篮球冠军赛, 甲, 乙两队夺取冠军的概率分别是73和41, 则该市夺得全省篮球冠军的概率是_______8. 口袋中装有10个相同的球, 其中6个球标有数字0, 4个球标有数字1, 若从袋中摸出5个球, 那么摸出的5个球所标数字之和小于2或大于3的概率是_______9. 在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.(Ⅰ)求笼内至少剩下....5只果蝇的概率;(Ⅱ)求笼内至少剩下....3只果蝇的概率.10. 甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是_______11.12. 在放有5个红球, 4个黑球, 3个白球的袋中, 任意取出3个球, 分别求出3个球全是同色球的概率及三个颜色互不相同的概率.13. 在一个袋子中装有7个红球, 3个绿球, 从中无放回地任意抽取两次, 每次只取一个,试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色球的概率;(4)至少取得一个红球的概率.1/24 7/3011.甲,乙两人各射击一次,击中目标的概率分别是32,43假设两人每次射击是否 击中相互之间没有有影响,求:(1)求甲射击5次,有两次未击中的概率 (2)假设某人连续2次未击中目标,就停止射击,求乙恰好射击5次后,被终止射击的概率12.甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.概率练习二1. 在一次试验中,事件A 出现的概率为P,则在n 次独立重复试验中,A 出现k 次的概率为__ __.k n k k n p p C --)1(2. 某人对某目标进行射击,若每次击中的概率为P,那么他只在第n 次击中目标的概率为_ _.p p n 1)1(--3. 某人对某目标进行射击,若每次击中的概率为P,那么他在第n 次恰是第k 次击中目标的概率为_ _.k n k k n p p C ----)1(11 4. 某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 1,3 (写出所有正确结论的序号)5. 某气象站对天气预报的准确率为60%,那么连续5次预报中有4次准确的概率为0.25926. 某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为12581 7. 在一次考试中出了6道是非题,正确的记“√”号,不正确的记“×”号,若某生完全随机记上6个符号,则全部是正确的概率为 1/64 ;正确解答不少于4道的概率为 11/32 ;至少正确解答一半的概率为 21/32 .8. 甲乙两人进行乒乓球比赛,每局比赛甲获胜的概率为32,则在三局两胜的赛制下甲获胜的概率为 20/27 , 比赛进行了两场即结束的概率为 5/9 , 在五局三胜的赛制下甲获胜的概率为 64/81 , 比赛进行了四场结束的概率为 10/279. 下列各图中,每个开关闭合的概率都是0.75,且是相互独立的,分别求灯亮的概率 9/16 15/16 57/64 249/2562. 2.1条件概率学案一、教学目标:条件概率定义的理解。
一、知识概述(一)事件的关系与运算1、包含关系对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B A(或A B).事件的包含关系与集合的包含关系:与集合的包含关系类似,B包含事件A(B A或A B)可用下图表示.不可能事件记作,显然(C为任一事件).事件A也包含于事件A,即A A.例如:在投掷骰子的试验中,{出现1点}{出现的点数为奇数}.2、相等事件如果B A且B A,那么称事件A与事件B相等,记作A=B.(1)两个相等的事件A、B总是同时发生或同时不发生;(2)所谓A=B,就是A、B是同一事件,这在验证两个事件是否相等时,是非常有用的,在许多情况中可以说是唯一的一种方法.例如事件C发生,那么事件D一定发生,反之亦然,则C=D.3、并(和)事件若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).并(和)事件与集合的并集的关系:与两个集合的并集类似,并事件A∪B(或A+B)可用下图表示.并事件具有三层意思:①事件A发生,事件B不发生;②事件B发生,事件A不发生;③事件A、B同时发生.即事件A、B至少有一个发生.事件A与事件B的并事件等于事件B与事件A的并事件.即A∪B=B∪A.例如:在投掷骰子的试验中,事件C、D分别表示投掷骰子出现1点、5点,则C∪D={出现1点或5点}.4、交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).交(积)事件与两个集合的交集类似,交事件A∩B(或AB)可用下图表示.事件A与事件B的交事件等于事件B与事件A的交事件,即A∩B=B∩A.例如:在投掷骰子的试验中,{出现的点数大于3}∩{出现的点数小于5}={出现的点数为4}.5、互斥事件若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥.思考:如何判断两个事件互斥?探究:在任何条件下都不可能同时发生的事件才是互斥事件.互斥事件与集合的关系:与两个集合类似,互斥事件可用下图表示.(1)A、B互斥是指事件A与事件B在一次试验中不会同时发生;(2)如果A与B是互斥事件,那么A与B两个事件同时发生的概率为0;(3)推广:如果事件A1,A2,…,A n中的任何两个事件互斥,就称事件A1,A2,…,A n彼此互斥.从集合角度看,n个事件互斥是指各个事件所含结果的集合彼此不相交.例如:在投掷骰子的试验中,若C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},则事件C1与事件C2互斥,C1,C2,C3,C4,C5,C6彼此互斥.6、对立事件若A∩B为不可能事件,A∪B为必然事件,那么事件A与事件B互为对立事件.对立事件与集合:与两个集合类似,对立事件可用下图表示.(1)从集合角度看,事件A的对立事件,是全集中由事件A所包含结果组成的集合的补集;例如:在投掷骰子的试验中,C={出现2点},则C的对立事件是D={出现1,3,4,5,6点}.(2)事件A、B对立是指事件A与事件B在一次试验中有且仅有一个发生.事件A 与事件B在一次试验中不会同时发生.(3)对立事件是针对两个事件来说的,一般地,两个事件对立,则两个事件必为互斥事件,反之,两个事件是互斥事件,但未必是对立事件.(4)对立事件是一种特殊的互斥事件,若A与B是对立事件,则A与B互斥且A ∪B(或A+B)为必然事件.(5)在一次试验中,事件A与它的对立事件只能发生其中之一,并且也必然发生其中之一.(二)概率的几个基本性质1、概率P(A)的取值范围由于事件的频数总小于或等于试验的次数,所以频率在0到1之间,从而任何事件的概率都在0到1之间,即0≤P(A)≤1.联想·引申:(1)必然事件B一定发生,则P(B)=1;(2)不可能事件C一定不发生,则P(C)=0;(3)若A B,则P(A)≤P(B).2、概率的加法公式当事件A与B事件互斥时,A∪B发生的频数等于A发生的频数与B发生的频数之和,从而A∪B的频率f n(A∪B)=f n(A)+f n(B),则概率的加法公式为:P(A∪B)=P(A)+P(B)联想·发散:(1)事件A与事件B互斥,如果没有这一条件,加法公式将不能应用.例如:抛掷一颗骰子,观察掷出点数,记事件A=“出现奇数”,事件B=“出现的点数不超过3”,那么A与B就不互斥.因为如果出现1或3,就表示A与B同时发生了.事件A∪B包括4种结果:出现1,2,3和5,因而P(A∪B)=,而P(A)=,P(B)=,显然,P(A∪B)≠P(A)+P(B);(2)如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n),即彼此互斥事件的概率等于各事件概率的和;(3)在求某些稍复杂的事件的概率时,可将其分解成一些概率较易求的彼此互斥的事件,化整为零,化难为易.3、对立事件的概率公式若事件A与事件B为对立事件,则A∪B为必然事件,所以P(A∪B)=1,又P(A ∪B)=P(A)+P(B),故P(A)=1-P(B).注:两个互斥事件不一定是对立事件,而两个对立事件一定是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件.二、例题讲解:例1、判断下列事件是否是对立事件,是否是互斥事件.从扑克牌40张(黑红梅方各10张)中任取一张.(1)抽出的是红桃与抽出的是黑桃;(2)抽出的红色牌与抽出的是黑色牌;(3)抽出的牌点数为5的倍数与抽出的牌点数大于9.答案:互斥不对立,互斥对立,不互斥不对立例2、福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为________.例3、某地区的年降水量在下列范围内的概率如下表所示:(1)求年降水量在[100,200)(mm)内的概率;(2)求年降水量在[150,300)(mm)内的概率.解:(1)记这个地区的年降水量在、、、范围内分别为事件,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,年降水量在[100,200)(mm)范围内的概率是,∴年降水量在[100,200)(mm)范围内的概率是0.37.(2)年降水量在[150,300)(mm)范围内的概率是,∴年降水量在[150,300)(mm)范围内的概率是0.55.例4、某工厂的产品中,出现二级品的概率是0.07,出现三级品的概率是0.03,其余都是一级品和次品,并且一级品数量是次品的9倍,求出现一级品的概率.解:设出现一级品的概率是P(A),因为一级品数量是次品的9倍,故出现一级品的概率也是次品的概率的9倍,出现次品的概率为P(A).根据题意,应有P(A)+P(A)+0.07+0.03=1,解得P(A)=0.81.∴出现一级品的概率是0.81.例5、同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6).计算:(1)向上的数相同的概率;(2)向上的数之积为偶数的概率.解:每掷一个骰子都有6种情况,所以同时掷两个骰子总的结果数为6×6=36种.(1)向上的数相同的结果有6种,故其概率为.(2)向上的数之积为偶数的情况比较多,可以先考虑其对立事件,即向上的数之积为奇数.向上的数之积为奇数的基本事件有:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,故向上的数之积为奇数的概率为;根据对立事件的性质知,向上的数之积为偶数的概率为.例6、射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.解:(1)记:“射中10环”为事件A,记“射中7环”为事件B,由于在一次射击中,A 与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.(2)记“不够7环”为事件E,则事件为“射中7环或8环或9环或10环”,由(1)可知“射中7环”“射中8环”等是彼此互斥事件.∴=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-=1-0.97=0.03,所以不够7环的概率为0.03.。
概率的定义和基本性质(二)引言概述:概率是概率论研究的基本概念,也是统计学中重要的概念之一。
它用来描述事件发生的可能性大小,并在统计推断和决策制定中起着关键作用。
本文将进一步介绍概率的定义和基本性质,以帮助读者更好地理解和应用概率理论。
正文内容:一、概率的定义1. 频率定义:概率是基于大量实验的观察结果,通过事件发生的频率来估计其发生的可能性。
2. 古典定义:概率是基于等可能性假设,通过事件发生的总数与样本空间的大小之比来估计其发生的可能性。
3. 主观定义:概率是基于个人主观判断和经验,通过主观分配可能性大小来估计事件发生的可能性。
二、概率的基本性质1. 非负性:概率值始终大于等于0,表示事件发生的可能性不会是负数。
2. 零和性:对于必然事件,其概率值为1,表示该事件一定会发生。
3. 互斥性:对于两个互斥事件,其概率值之和为1,表示这两个事件有且只能发生一个。
4. 加法法则:对于两个不互斥事件,其概率值之和为两个事件发生概率之和减去两个事件同时发生的概率。
5. 乘法法则:对于两个独立事件,其概率值之积为两个事件发生概率之积。
三、条件概率和独立性1. 条件概率:给定一个条件下,事件发生的概率。
表示为P(A|B),表示在事件B发生的条件下,事件A发生的概率。
2. 乘法法则的条件形式:根据条件概率定义,可以将乘法法则扩展为条件形式。
3. 独立性:表示两个事件的发生与否相互独立,即一个事件的发生不受另一个事件的影响。
4. 独立性的判定:根据条件概率和乘法法则,可以通过计算条件概率来判断事件之间的独立性。
四、事件的关系与运算1. 事件的包含与不包含关系:一个事件发生必然导致其包含事件的发生,而不包含事件的发生则不一定导致该事件的发生。
2. 事件的并与交运算:事件的并运算表示多个事件中至少有一个事件发生的情况,交运算表示多个事件同时发生的情况。
3. 事件的补运算:事件的补运算表示不发生该事件的情况。
4. 事件的差运算:事件的差运算表示一个事件发生,而另一个事件不发生的情况。
概率论的基本概念和性质概率论,作为数学的一个分支,研究的是不确定性的规律性和可计量性。
它广泛应用于自然科学、社会科学以及工程技术等领域,是现代科学和技术发展所必需的重要工具。
本文将探讨概率论的基本概念和性质,帮助读者更深入地理解概率论的应用。
一、概率的定义及其基本性质概率是描述随机事件发生可能性的数值。
它的定义可以由频率学派和古典学派给出。
1.1 频率学派的定义频率学派通过观察事件在大量重复试验中出现的频率来定义概率。
当试验次数无限增加时,事件发生的频率将趋近于一个确定的值,这个值就是事件的概率。
频率学派的定义使概率具有了客观性和可验证性。
1.2 古典学派的定义古典学派认为概率是事件在所有可能结果中占据的比例。
例如,掷一颗均匀骰子,每个点数出现的可能性均等,因此每个点数的概率为1/6。
古典学派的定义在一些简单情况下更为方便,但对于复杂问题可能不适用。
二、概率的性质2.1 非负性概率是非负的,即对于任意事件A,有0 ≤ P(A) ≤ 1。
概率取值在0到1之间,表示事件发生的可能性大小。
2.2 规范性对于必然事件(即一定会发生的事件),概率为1,即P(S) = 1,其中S为样本空间。
对于不可能事件(即一定不会发生的事件),概率为0,即P(Φ) = 0,其中Φ为不含任何样本点的空集。
2.3 可列可加性对于两个互不相容的事件A和B,它们的概率满足可列可加性,即P(A∪B) = P(A) + P(B)。
只要事件A和B没有共同的结果,它们的概率可直接相加。
2.4 完备性对于样本空间S中的所有事件的概率之和为1,即P(S) = 1。
样本空间中的事件包括必然事件和不可能事件,其概率之和包含了所有可能性。
三、条件概率条件概率指的是在给定某个相关事件发生的条件下,另一个事件发生的概率。
设A和B是两个事件,且P(B) > 0,那么事件A在事件B 发生的条件下的概率记为P(A|B),它的计算方法为P(A|B) = P(A∩B) / P(B)。