高二文科数学——抛物线练习题
- 格式:doc
- 大小:473.00 KB
- 文档页数:3
抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
高中抛物线试题及答案一、选择题1. 抛物线的标准方程为 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。
下列哪个选项不是抛物线的标准形式?A. \( y = 3x^2 - 4x + 5 \)B. \( y = -2x^2 + 3 \)C. \( x = 4y^2 - 6y + 7 \)D. \( y = 0 \)答案:D2. 对于抛物线 \( y = ax^2 + bx + c \),如果 \( a > 0 \),抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 抛物线 \( y = x^2 \) 的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)答案:B二、填空题4. 抛物线 \( y = 2x^2 - 4x + 3 \) 的顶点坐标是 _________ 。
答案:(1, 1)5. 抛物线 \( y = -3x^2 + 6x - 5 \) 的对称轴方程是 _________ 。
答案:x = 1三、解答题6. 已知抛物线 \( y = ax^2 + bx + c \) 经过点 (1, 2) 和 (-1, 6),求抛物线的方程。
解:将点 (1, 2) 代入方程得 \( 2 = a(1)^2 + b(1) + c \),即\( a + b + c = 2 \)。
将点 (-1, 6) 代入方程得 \( 6 = a(-1)^2 + b(-1) + c \),即\( a - b + c = 6 \)。
解得 \( b = -2 \),\( a + c = 4 \)。
假设 \( a = 1 \),则 \( c = 3 \),抛物线方程为 \( y = x^2- 2x + 3 \)。
7. 已知抛物线 \( y = x^2 + 4x + 5 \),求其焦点坐标。
高二数学抛物线试题1.抛物线的焦点坐标为 .【答案】【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标。
解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写【考点】抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题.2.设抛物线上一点P到轴的距离为4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12【答案】A【解析】根据题意,抛物线的焦点在y轴上,且抛物线上一点P到轴的距离为4,即横坐标的绝对值为4,可知y=2,那么根据其定义,可知点P到该抛物线焦点的距离是2+2=4,可知选A.【考点】抛物线的定义点评:解决的关键是对于抛物线上点到焦点的距离等于其到其准线的距离的运用,属于基础题。
3.中心在原点,焦点在轴上的双曲线的实轴与虚轴相等,一个焦点到渐近线的距离为,则双曲线的方程为 .【答案】【解析】根据题意可知设双曲线方程为,(a>0),则可知,故可知双曲线的方程为。
【考点】双曲线几何性质点评:本题考查用待定系数法求双曲线的标准方程,以及点到直线的距离公式的应用4.抛物线的焦点坐标为()A.B.C.D.【答案】C【解析】易知抛物线的焦点在y轴上,p=2,所以焦点坐标为。
【考点】抛物线的简单性质。
点评:熟练掌握抛物线四种形式的焦点坐标:焦点坐标为一次项系数的,但一定要注意把抛物线化为标准形式。
5.已知抛物线的焦点到准线的距离为,且上的两点关于直线对称,并且,那么_______【答案】【解析】抛物线方程转化为,设过的直线为,与联立得,中点为代入直线得【考点】直线与抛物线相交的点的对称点评:两点关于直线对称则直线是连接两点的线段的垂直平分线,垂直得斜率关系,平分得点的坐标关系,此题难度较大6.已知抛物线的焦点坐标是(0,-3),则该抛物线的标准方程为()A.B.C.D.【答案】A【解析】解:因为抛物线的焦点坐标是(0,-3),则p=6,2p=12焦点在y轴上,开口向下,故该抛物线的标准方程为,选A7.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】解:抛物线y=8x2即 x2="1/" 8 y,∴p="1" /16 .设A、B、M到准线y="-1/" 32 的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即 2(2+1/ 32 )=AA′+BB′=AB,∴AB="65/" 16 ,故答案为 65/ 16 .8.设抛物线的准线与轴交于点,若过点的直线与抛物线有公共点,则直线的斜率的取值范围是【答案】【解析】由于抛物线的准线方程为x=-2,所以Q(-2,0),设过点Q的直线方程为,它与抛物线方程联立消y得,或k=0.解之得.9.抛物线上到直线距离最近的点的坐标是______ ___.【答案】.(1,1);【解析】解:设P(x,y)为抛物线y=x2上任一点,则P到直线的距离d="|2x-y-4|" / 5 =|x2-2x+4| / 5 =(x-1)2+3 / 5 ,∴x=1时,d取最小值/ 5 ,此时P(1,1).故选B10.抛物线上与焦点的距离等于8的点的横坐标是()A.2B.3C.4D.5【答案】D【解析】解:因为的焦点F为(3,0)设所求点为P(x,y),利用抛物线定义可知|PF|=x+3,=8,X=5,故选D11.如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),∥.记,梯形面积为.(1)求面积以为自变量的函数式;(2)若,其中为常数,且,求的最大值.【答案】(1),;(2).【解析】本试题主要考查了抛物线的方程求解,以及直线与抛物线的位置关系的综合运用。
抛物线(易错必刷25题4种题型专项训练)➢抛物线的定义➢抛物线的方程➢抛物线的焦半径➢直线与抛物线的位置关系一.抛物线的定义(共5小题)1.已知抛物线214y x =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .1716B .5C .6D .【答案】B【详解】依题意,由抛物线的定义知,点A 到抛物线焦点的距离即点A 到准线1y=-的距离,即4(1)5--=.故选:B.2.(多选)已知抛物线的焦点在y 轴上,抛物线上一点(),3M m -到焦点的距离为5,则m 的值为( )A .B .-C .D .-3.,P Q 分别是抛物线 22x y = 和 x 轴上的动点, ()2,1M - ,则 PM PQ + 的最小值为( )A .5B .52C D .24.已知点()01,P y 是抛物线2:2(0)C y px p =>上一点,且点P 到C 的焦点距离为2,则p = .【答案】2【详解】抛物线准线方程为故答案为:2.5.已知抛物线2:4C y x =的焦点为F ,点M 在C 上,且点M 到直线2x =-的距离为6,则MF = .二.抛物线的方程(共3小题)6.已知曲线()2024log 3y x =-过抛物线2:C y mx =的焦点,则C 的准线方程为( )A .14=-x B .4y =-C .4x =-D .14y =-【答案】C【详解】易知函数()2024log 3y x =-过x 轴上定点()4,0,即为C 的焦点,故C 的准线方程为4x =-.故选:C.7.过抛物线C :22y px =(0p >)的顶点O ,且倾斜角为60°的直线与抛物线的另一个交点为A ,若8OA =,则抛物线的方程为 .由题意可知4,OB AB ==代入抛物线方程得488p =故答案为:212y x=8.抛物线()220y px p =>的焦点为F ,其准线与双曲线22142x y-=的渐近线相交于A 、B 两点,若ABF △的周长为42,则抛物线方程是 .故答案为:24y x=三.抛物线的焦半径(共8小题)9.设F 为抛物线2:8C y x =的焦点,点()00,P x y 为C 上一点,过P 作y 轴的垂线,垂足为A ,若3PF PA =,则cos FPA Ð=( )A .223B .2-C .13D .13-所以022,y O =为原点,10.已知抛物线24x y =的焦点为F ,过F 的直线l 交抛物线于A 、B 两点,若4AF BF =,则AF = .11.已知M 是抛物线28y x =上一点,F 是抛物线的焦点,O 为坐标原点.若120MFO Ð=o ,则线段MF 的长为 .【答案】8【详解】如图所示:设MF a =,易求(F 因为 120MFO Ð=o 所以在Rt MEF V ,ME 所以 132,22M a æ+ççè12.已知抛物线216y x =,的焦点为F ,P 点在抛物线上,Q 点在圆C :()()22624x y -+-=上,则PQ PF +的最小值为 .13.已知抛物线C :24y x =的焦点为F ,点A 、B 是抛物线C 上不同的两点,且A 、B 中点的横坐标为2,则AF BF += .【答案】6【详解】设()()1122,,,A x y B x y ,由A ,B 中点的横坐标为2,可得124x x +=,所以||||+=AF BF 12116x x +++=.故答案为:6.14.直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .32设1122()A x y B x y ,,(,),则由3AF BF =,得1y 由3AF BF =,得1x 联立解得3x =,x =15.(多选)设抛物线24y x =,F 为其焦点,P 为抛物线上一点,则下列结论正确的是( )A .抛物线的准线方程是=1x -B .焦点到准线的距离为4C .若()2,1A ,则PA PF +的最小值为3D .以线段PF 为直径的圆与y 轴相切由抛物线的定义,得PF因此,以PF 为直径的圆与故选:ACD16.(多选)已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是.( )A .若O 为线段PQ 中点,则l 的斜率为±2B .若4PF =,则OP =C .存在直线l ,使得PF QF ^D .PFQ △面积的最小值为2若O 为PQ 中点,则OHP △即H 与焦点F 重合,所以x 代入方程24y x =,得P y =±所以直线l 的斜率为2PPy x =±B 项,若4=PF ,则PF =四.直线与抛物线的位置关系(共9小题)17.(多选)在平面直角坐标系中,过抛物线C :24y x =的焦点F 作一条与坐标轴不平行的直线l ,与C 交于()11,A x y ,()22,B x y 两点,则下列说法正确的是( )A .若直线OB 与准线交于点D ,则0AD k =B .对任意的直线l ,121x x =C .2AF BF +的最小值为3+D .以AF 为直径的圆与y 轴的公共点个数为偶数【答案】ABC【详解】对于A ,点A (x 1,y 1),B (x 2,y 2)在抛物线C :24y x =上,18.已知抛物线2:4C y x =的焦点为,,F A B 为C 上的两点.若直线FA 的斜率为12,且0FA FB ×=,延长,AF BF 分别交C 于,P Q 两点,则四边形ABPQ 的面积为.【答案】50【详解】由题可知,抛物线的焦点坐标为119.斜率为2的直线l 与抛物线2y px =相交于A 、B 两点,若A 、B 两点的中点为()2,1M ,则p 的值是 20.已知抛物线24C y x =:的焦点为F ,过F 的直线l 交C 于,A B 两点,y 轴被以AB 为直径的圆所截得的弦长为6,则AB = .【答案】10【详解】抛物线C :24y x =的焦点故设直线AB 的方程为y 设A (x 1,y 1),B (x 2,y 2).则()24,1,y x y k x ì=ïí=-ïî即22k x ()2222Δ244k k k =+-×21.已知椭圆C :()222210+=>>x y a b a b 的左、右焦点分别为1F ,2F ,椭圆C 的右焦点与抛物线24y x =的焦点重合,两曲线在第一象限的交点为P ,12PF F V (1)求椭圆C 的方程;(2)过点P 的直线l 交椭圆C 于另一点A ,若212PAF PF F S S =△△,求l 的方程.直线()1:261AF y x =-+,联立()22261143y x x y ì=-+ïí+=ïî,消去y 得,23364280x x ++=,解得23x =-或1411x =-,当23x =-时,22626133y æö=--+=-ç÷èø,22.已知椭圆22221(0)x y a b a b +=>>的离心率为12,抛物线24x y =的焦点为点F ,过点F 作y 轴的垂线交椭圆于P ,Q 两点,||PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作抛物线的切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴于点G ,若GED V ,FOD V 的面积分别记为1S ,2S ,且121849S S =,点A 在第一象限,求点A 的坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>过点,且其一个焦点与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设直线AB 与椭圆C 交于A ,B 两点,若点(2,1)M -是线段AB 的中点,求直线AB 的方程.24.已知抛物线21:3C y x =及抛物线22:2(0)C y px p =>,过2C 的焦点F 的直线与1C 交于A ,B 两点,O 为坐标原点,OA OB ^.过F 的两条直线MN ,PQ 与2C 交于M ,N ,P ,Q 四点,其中M ,P 在第一象限,若直线MP 与x 轴的交点为(),0T t .(1)求2C 的方程;(2)若2t=-,求直线NQ与x轴的交点的坐标;(3)是否存在点T,使得M,N,P,Q四点共圆?若存在,求出t的值;若不存在,请说明理由.(2)由(1)可得设直线MN的方程为由2123y xx myì=í=+î,得(3)由(2)可得1y y 若M ,N ,P ,Q 四点共圆,则有即2212331212y y æöæö++=ç÷ç÷èøèø即22223124y y y y +=+,所以25.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且90MFN Ð=°,求MFN △面积的最小值.【答案】(1)2p =;∵F(1,0),显然直线MN的斜率不可能为零,设直线MN:x my n=+,M由24y xx my nì=í=+î可得,24y-。
抛物线大题30题1 .已知抛物线的顶点在原点,焦点与椭圆224520x y +=的一个焦点相同,(1)求椭圆的焦点坐标与离心率;(2)求抛物线方程.2 .过抛物线y 2=4x 的焦点作直线AB 交抛物线于 A .B,求AB 中点M 的轨迹方程。3 .已知直线l 过定点()0,4A ,且与抛物线2:2(0)C ypx p = >交于P 、Q 两点,若以PQ 为直径的圆经过原点O ,求抛物线的方程.4 .已知p :方程2212x y m m+=-表示椭圆;q :抛物线y =221x mx ++与 x 轴无公共点,若p 是真命题且q 是假命题,求实数m 的取值范围.5 .在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。
(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D .E 两点,ME=2DM , 记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式。
6 .直线y=2x 与抛物线y=-x 2-2x+m 相交于不同的两点 A .B ,求(1)实数m 的取值范围;(2)∣AB ∣的值(用含m 的代数式表示).7 .已知抛物线1C :24(0)y px p =>,焦点为2F ,其准线与x 轴交于点1F ;椭圆2C :分别以12F F 、为左、右焦点,其离心率12e =;且抛物线1C 和椭圆2C 的一个交点记为M .(1)当1p =时,求椭圆2C 的标准方程;(2)在(1)的条件下,若直线l 经过椭圆2C 的右焦点2F ,且与抛物线1C 相交于,A B 两点,若弦长||AB 等于12MF F ∆的周长,求直线l 的方程.8 .如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A ,B 两点,O 为坐标原点,(4,12)OA OB +=--。(Ⅰ)求直线l 和抛物线C 的方程; (Ⅱ)抛物线上一动点P 从A 到B 运动时, 求△ABP 面积最大值.9.设圆Q 过点P (0,2), 且在x 轴上截得的弦RG 的长为4.(Ⅰ)求圆心Q 的轨迹E 的方程;(Ⅱ)过点F (0,1),作轨迹E 的两条互相垂直的弦AB ,CD ,设AB 、CD 的中点分别为M ,N ,试判断直线MN 是否过定点?并说明理由. 10.已知抛物线2:2C y px =的准线方程14x =-,C 与直线1:y x =在第一象限相交于点1P ,过1P 作C的切线1m ,过1P 作1m 的垂线1g 交x 轴正半轴于点1A ,过1A 作1的平行线2交抛物线C 于第一象限内的点2P ,过2P 作抛物线1C 的切线2m ,过2P 作2m 的垂线2g 交x 轴正半轴于点2A ,…,依此类推,在x 轴上形成一点列1A ,2A ,3A ,…,(*)n A n N ∈,设点n A 的坐标为(,0).n a(Ⅰ)试探求1n a +关于n a 的递推关系式; (Ⅱ)求证:13322n n a -≤⋅-; (Ⅲ)求证:()()1234211(23)2(23)6(23)13321n n n a a a n n n ++++≥-+⋅+⋅+⋅⋅+⋅⋅+. 11.已知直线1:++=k kx y l ,抛物线x y C 4:2=,定点M(1,1)。(I)当直线l 经过抛物线焦点F 时,求点M 关于直线l 的对称点N 的坐标,并判断点N 是否在抛物线C 上;(II)当)0(≠k k 变化且直线l 与抛物线C 有公共点时,设点P(a,1)关于直线l 的对称点为Q(x 0,y 0),求x 0关于k 的函数关系式)(0k f x =;若P 与M 重合时,求0x 的取值范围。12.位于函数4133+=x y 的图象上的一系列点 ),,(,),,(),,(222111n n n y x P y x P y x P ,这一系列点的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (Ⅰ)求点n P 的坐标;(Ⅱ)设抛物线 ,,,,,321n C C C C 中的每一条的对称轴都垂直于x 轴,对于n ∈*N 第n 条抛物线n C 的顶点为n P ,抛物线n C 过点)1,0(2+n D n ,且在该点处的切线的斜率为n k ,求证:10111113221<+++-n n k k k k k k . 13.已知抛物线24y x =的焦点为F , A .B 为抛物线上的两个动点.(Ⅰ)如果直线AB 过抛物线焦点,判断坐标原点O 与以线段AB 为直径的圆的位置关系, 并给出证明;(Ⅱ)如果4OA OB ⋅=-(O 为坐标原点),证明直线AB 必过一定点,并求出该定点.14.已知点F(2 ,0) ,直线:1l x =-,动点N 到点F 距离比到直线l 的距离大1;(1)求动点N 的轨迹C 的方程; (2)直线2y x =-与轨迹C 交于点A,B,求ABO ∆的面积.15.(本小题共13分)已知抛物线C :2y x =,过定点()0,0A x 01()8x ≥,作直线l 交抛物线于,P Q (点P 在第一象限). (Ⅰ)当点A 是抛物线C 的焦点,且弦长2PQ =时,求直线l 的方程;(Ⅱ)设点Q 关于x 轴的对称点为M ,直线PM 交x 轴于点B ,且BQ BP ⊥.求证:点B 的坐标是0(,0)x -并求点B 到直线l 的距离d 的取值范围.16.抛物线()2:20C ypx p=上横坐标为32的点到焦点F 的距离为2(I )求p 的值;(II )过抛物线C 的焦点F.,作相互垂直的两条弦AB 和CD , 求AB CD +的最小值。
抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。
高二文科数学-—抛物线练习题【知识回顾】平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
(1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02pPFx =+;当焦点F 在y 轴上时,02p PF y =+.此公式叫做焦半径公式。
(2)设AB 是过抛物线22y px =的焦点F 的一条弦,则12||AB x x p =++。
一、选择题1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2=21y C 。
y 2=4x 或x 2=21y D. y 2=4x 或x 2=4y 2.抛物线y = —2x 2的准线方程是( )A 。
x = —21 B .x =21 C 。
y =81 D 。
y = —81 3.动圆M 经过点A (3,0)且与直线l :x = —3相切,则动圆圆心M 的轨迹方程是 A. x y 122= B 。
x y 62=C. xy 32= D.x y 242=4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.x y 162= B 。
yx 82-=C. x y 162=或y x 82-= D 。
x y 162=或y x 82=6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( )A .x 2= —4yB .x 2=4yC .y 2=4xD .y 2= -4x7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A 。
4± B.2- C 。
2-或4- D 。
2±8.设AB 是抛物线py x 22=的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( )A. ︒45 B 。
高二抛物线基础测试题一、 选择题:1.顶点在原点,焦点是F (0,5)的抛物线方程是( )A .y 2=20xB .x 2=20yC .y 2=120xD .x 2=120y2.抛物线y =-x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝⎛⎭⎪⎫0,-14 C.⎝ ⎛⎭⎪⎫14,0 D.⎝ ⎛⎭⎪⎫-14,03.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( )A.18 B .-18 C .8 D .-84.(2010年高考陕西卷)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .45.(2010年高考湖南卷)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .126.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A .y 2=-16xB .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)7.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y8.已知抛物线y 2=2px (p >0)的焦点F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .|FP 1|+|FP 3|=2|FP 2|D .|FP 1|·|FP 3|=|FP 2|29.抛物线y 2=12x 截直线y =2x +1所得弦长等于( )A.15 B .215C.152D .15.10.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定11.过抛物线的焦点且垂直于其对称轴的弦是AB ,抛物线的准线交x 轴于点M ,则∠AMB 是( )A .锐角B .直角C.钝角D.锐角或钝角12.(2010年高考山东卷)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1 B.x=-1C.x=2 D.x=-2二.填空题13.已知直线x-y-1=0与抛物线y=ax2相切,则a=________.14.抛物线y2=4x上的点P到焦点F的距离是5,则P点的坐标是________.15.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|=________. 16.边长为1的等边三角形AOB,O为原点,AB⊥x轴,则以O为顶点,且过A、B的抛物线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.18.抛物线的焦点F在x轴上,直线y=-3与抛物线相交于点A,|AF|=5,求抛物线的标准方程.19.已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.高二抛物线基础测试题参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BBBCBCCCACBB1.解析:选B.由p2=5得p =10,且焦点在y 轴正半轴上,故x 2=20y .2.解析:选B.x 2=-y ,∴2p =1,p =12,∴焦点坐标为⎝ ⎛⎭⎪⎫0,-14.3.解析:选B.由y =ax 2,得x 2=1a y ,14a =-2,a =-18.4.解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.5解析:选B.如图所示,抛物线的焦点为F (2,0),准线方程为x =-2,由抛物线的定义知:|PF |=|PE |=4+2=6.6.解析:选C.∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x . 7.解析:选C.通径2p =8且焦点在x 轴上,故选C. 8.解析:选C.由抛物线定义知|FP 1|=x 1+p2,|FP 2|=x 2+p 2,|FP 3|=x 3+p2,∴|FP 1|+|FP 3|=2|FP 2|,故选C.9.解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +1y 2=12x 得4x 2-8x +1=0,∴x 1+x 2=2,x 1x 2=14,∴|AB |=1+22x 1-x 22=5[x 1+x 22-4x 1x 2]=15.10. 解析:选C.|PF |=x P +p 2,∴|PF |2=x P 2+p4,即为PF 的中点到y 轴的距离.故该圆与y 轴相切.11. 解析:选B.由题意可得|AB |=2p .又焦点到准线距离|FM |=p ,F 为AB 中点,∴|FM |=12|AB |,∴△AMB 为直角三角形且∠AMB =90°.12.解析:选B.∵y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py-p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1. 二. 填空题13解析:由⎩⎪⎨⎪⎧x -y -1=0y =ax2,得ax 2-x +1=0, 由Δ=1-4a =0,得a =14. 答案:1414.解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4, ∴y 20=16,∴y 0=±4. 答案:(4,±4) 15.解析:设A (x 1,y 1),B (x 2,y 2), 则|FA |+|FB |=x 1+x 2+2.又⎩⎪⎨⎪⎧y 2=4x 2x +y -4=0⇒x 2-5x +4=0, ∴x 1+x 2=5,x 1+x 2+2=7. 答案:7 16.解析:焦点在x 轴正半轴上时,设方程为y 2=2px (p >0)代入点(32,12)得p =312,焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),∴p =-312.综上,所求方程为y 2=±36x . 答案:y 2=±36x 三、解答题17.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M 点的坐标.解:由抛物线定义知焦点为F (-p 2,0),准线为x =p2,由题意设M 到准线的距离为|MN |, 则|MN |=|MF |=10,即p2-(-9)=10, ∴p =2.故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).18.抛物线的焦点F 在x 轴上,直线y =-3与抛物线相交于点A ,|AF |=5,求抛物线的标准方程.解:设所求抛物线的标准方程为: y 2=ax (a ≠0),A (m ,-3).则由抛物线的定义得5=|AF |=|m +a4|,又(-3)2=am .所以,a =±2或a =±18.故所求抛物线的方程为y 2=±2x 或y 2=±18x .19.已知抛物线y 2=-x 与直线l :y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-xy =k x +1,消去x ,得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1.因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA →·OB →=0,所以OA ⊥OB .(2)设直线l 与x 轴的交点为N ,则N 的坐标为(-1,0),所以S △AOB =12|ON |·|y 1-y 2|=12×|ON |×y 1+y 22-4y 1·y 2 =12×1× 1k 2+4=10, 解得k 2=136,所以k =±16.。
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线 x+ 2y= 3 距离相等的点的轨迹是 ()A .直线B.抛物线C.圆D.双曲线2.抛物线 y2= x 上一点 P 到焦点的距离是 2,则 P 点坐标为 ()3,± 67,± 79,± 35,± 10A. 22B. 42C. 42D. 223.抛物线 y= ax2的准线方程是y= 2,则 a 的值为 ()11A. 8 B .-8C. 8D.- 84.设抛物线 y2= 8x 上一点 P 到 y 轴的距离是4,则点 P 到该抛物线焦点的距离是 ()A .4B . 6C. 8D. 125.设过抛物线的焦点 F 的弦为 AB,则以 AB 为直径的圆与抛物线的准线的地址关系是()A .订交B .相切C.相离D.以上答案都有可能6.过点 F(0,3)且和直线 y+ 3=0 相切的动圆圆心的轨迹方程为 ()A .y2= 12xB .y2=- 12x C. x2= 12y D .x2=- 12y7.抛物线 y2= 8x 上一点 P 到 x 轴距离为12,则点 P 到抛物线焦点 F 的距离为 ()A .20B .8C. 22D. 248.抛物线的极点在坐标原点,焦点是椭圆4x2+ y2= 1 的一个焦点,则此抛物线的焦点到准线的距离为 ()11A. 2 3 B. 3 C.2 3 D.4 39.设抛物线的极点在原点,其焦点F 在 y 轴上,又抛物线上的点(k,- 2)与 F 点的距离为4,则 k 的值是 ()A. 4 B . 4 或- 4C.- 2 D .2 或- 212的焦点坐标是 ()10.抛物线 y=m x (m<0)A.0,mB. 0,-mC. 0,1D. 0,-1 444m4m11.抛物线的极点在原点,对称轴是x 轴,抛物线上的点(-5,2 5) 到焦点的距离是6,则抛物线的方程为 ()A. y2=- 2x B .y2=- 4x C. y2= 2x D. y2=- 4x 或 y2=- 36x12.已知抛物线y2=2px(p>0) 的准线与圆 (x- 3)2+ y2= 16 相切,则p 的值为 () 1A. 2 B . 1C.2 D .4二、填空题13.过抛物线焦点 F 的直线与抛物线订交于A 、B 两点,若A 、B 在抛物线准线上的射影是A 1、B 1,则∠ A 1FB 1=。
高二文科数学——抛物线练习题【知识回顾】平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
(1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02pPF x =+;当焦点F 在y 轴上时,02pPF y =+。
此公式叫做焦半径公式。
(2)设AB 是过抛物线22y px =的焦点F 的一条弦,则12||AB x x p =++。
一、选择题(每小题4分,共40分。
答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2=21y C . y 2=4x 或x 2=21y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = -21 B .x =21 C . y =81 D . y = -81 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是A . x y 122=B . x y 62=C . x y 32=D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是A .x y 162=B .y x 82-=C . x y 162=或y x 82-=D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( )A .4±B .2-C . 2-或4-D .2± 8.设AB 是抛物线py x 22=的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( )A . ︒45B . ︒60C . ︒90D .︒1209.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( )A .(41,21) B .(1,1) C .(49,23) D .(2,4) 10.设F 为抛物线y x 42=的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .⎪⎭⎫⎝⎛41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。
答案填在试卷指定的横线上)11.抛物线y 2= -8x 的焦点到准线的距离是12.抛物线)0(12<=m x m y 的焦点坐标是 13.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则||AB 的值是14.设AB 是抛物线x y 22-=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为【附加题】(12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22122:1(0)x y C a b a b+=>>的左焦点1(10)F -,,且在(01)P ,在1C 上。
(1)求1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程高二文科数学第15周周练答卷 班别 座号 姓名11. 12. 13. 14.三、解答题(10+10+12+12=44分)15.(编者自拟题)(10分)已知动圆P 过定点(1,0)A -,且与直线:1l x =相切。
(1)求动圆圆心P 的轨迹方程;(2)若点P 的横坐标为2-,求||PA 。
16.(编者自拟题)(10分)已知直线1y kx =-与抛物线2y x =有两个不同的交点,A B 。
(1)求k 的取值范围; (2)若AOB ∆O 为原点,求k 的值。
17.(编者自拟题)(12分)已知过点(1,2)P 的一条动直线l 与抛物线22x y =交于,A B 两点。
(1)若点P 恰是线段AB 的中点,求直线l 的方程;(2)若点M 是线段AB 的中点,求动点M 的轨迹方程。
18.(编者自拟题)(12分)已知过抛物线x y 42=的焦点的直线l 与抛物线交于,A B 两点。
(1)若||5AB =,求直线l 的方程;(2)若2AF FB =,求直线l 的方程。
高二文科数学答案【部分习题思路提示】第8题:11||||,||||AF AA BF BB ==。
第9题:抛物线y =x 2上的点可表示为(x ,x 2)。
第10题:设点P 到准线的距离为d ,则||||PA PF +||PA d =+≥。
第14题:先求线段AB 中点C 到抛物线x y 22-=的准线的距离。
(11) 4 (12) (0,)4m (13) 8 (14) 25 三、解答题(10+10+12+12=44分)15.解:(1)根据动圆P 过定点(1,0)A -,且与直线:1l x =相切,可知动圆圆心P 到定点A 的距离与到定直线l 的距离相等,可见圆心P 的轨迹是以A 为焦点,l 为准线的抛物线,其中焦点到准线的距离为2,故所求的动圆圆心P 的轨迹方程为24y x =-。
(2)根据点P 到焦点A 的距离等于到准线l 的距离,可知||1(2)3PA =--=。
16.解:(1)将1y kx =-代入2y x =,得210x kx -+=。
要使直线与抛物线有两个不同的交点,就要使240k ∆=-≥,即2k ≤-或2k ≥,故所求的k 的取值范围是{|2k k ≤-或2}k ≥。
(2)设,A B两点的坐标分别为1122(,),(,)x y x y ,则由(1),知1212,1x x k x x +==,其中11221,1y kx y kx =-=-,于是||AB∴=====。
又设原点O 到直线1y kx =-,即10kx y --=的距离为d ,则1||2AOBd S AB d ∆=⇒=⋅⋅= 2=,得3k =±。
∵3k =±满足(1)的结论,∴所求的k 的值为3k =±17.解:(1)若直线l x ⊥轴,则条件显然不成立。
若直线l 不垂直于x 轴,则直线可设为2(1)y k x -=-,即(1)2y k x =-+,代入22x y =,得2122240,2x kx k x x k -+-=∴+=,故线段AB 的中点的横坐标为k ,依题意知1k =,此时直线方程可化为1y x =+,易知与抛物线22x y =有两个不同的交点。
∴所求的直线方程为10x y -+=。
(2)若直线l x ⊥轴,则条件显然不成立。
设动点M 的坐标为(,)x y ,则122x x x k +==,其中(1)2y k x =-+,消去k ,得 (1)2y x x =-+,即22y x x =-+,这就是所求的动点M 的轨迹方程。
18.解:(1)易知抛物线x y 42=的焦点的坐标为(1,0),准线方程为1x =-。
当直线l x ⊥轴时,条件显然不成立,设所求的直线方程为(1)y k x =-,它与抛物线的交点,A B 的坐标分别为1122(,),(,)x y x y ,则根据抛物线上的点到焦点的距离等于到准线的距离,得1212||||||(1)(1)2AB AF BF x x x x =+=+++=++。
将(1)y k x =-代入x y 42=,得2222212224(24)0,k k x k x k x x k+-++=∴+=。
再由||5AB =,得222242542k k k k++=⇒=⇒=± 故所求的直线方程为2(1)y x =±-,即220x y --=与220x y +-=。
(2)当直线l x⊥轴时,条件显然不成立,则由2AF FB=,得1122(1,)2(1,)x y x y--=-,即1212122,23x x x x -=-∴=-+。
再由21212224,1k x x x x k ++==,得1221x x k ⎧=⎪=⎨⎪=±⎩,其中121x x ==与条件不符,舍去。
故所求的直线方程为1)y x =±-,即0y --=与0y +-=。
【附加题】解:(1)由题意得:1,11b c a b c ===⇔===故椭圆1C 的方程为:2212x y += (2)①设直线:l x m =,直线l 与椭圆1C 相切m ⇔= 直线与抛物线22:4C y x =相切0m ⇔=,得:m 不存在②设直线:l y kx m =+直线l 与椭圆1C 相切222(12)4220k x kmx m ⇔+++-=两根相等221021m k ⇔∆=⇔=+直线与抛物线22:4C y x =相切2222(2)0k x km x m ⇔+-+=两根相等201km ⇔∆=⇔= 解得:2k m ==或:(2)22k m l y x =-==±+。