式中:V (x) 0 取+号,V (x) 0 取-号
Es
理想模型的实际意义在于证明了三维理想晶体的表面上每个原子 都会在禁带中产生一个附加能级
大多数结晶半导体的原子密度在1022cm-3量级.按此推算,单位面积 表面的表面态数应在1015量级. 数目如此巨大的表面能级实际已构 成了一个能带。
表面态本质上与表面原子的未饱和键,即悬挂键有关.
表面取向不同,其悬挂键的密度亦有所不同。表面态亦有施主和 受主之分。
当金属与半导体表面间正压进一步增大,表面 处费米能级位置可能高于禁带中央能量。使得 在表面处的少子电子浓度反型层。
半导体空间电荷层的负电荷由两部分组成:耗尽
层中已经电离的受主负电荷和反型层中的电子。
n 型半导体同样有:
金属与半导体间加正压, 多子堆积;
表面态会加速非平衡载流子的复合,会改变半导体表面的功函数,从而影响 材料和金属-半导体接触的性能。但另一方面我们也看到,外加电压能通过 金属-半导体接触改变半导体表面的电场,使表面附近的能带发生不同程度 的弯曲。以后我们会知道,利用这样的表面电场效应可以做成各种各样的 器件。
8.1.1 理想一维晶体模型及其解 由于晶格的不完整性使势场的周期性受到破坏时,则在禁带中产生附加能级。
E2(x)
(x 0)
V(x)=V(x a)
4
对能量E<V0的电子
1.在晶体外部,电子波函数集中在x=0的表面处,随着离开表 面距离的增加,波函数按照指数形式衰减。
2 2m0
d 21( x) dx
V01(x)
E 1 ( x)
(x 0)
1
1
2m0 (V0 E )2 x
2m0 (V0 E )2 x