初中数学复习:几何图形的初步认识
- 格式:docx
- 大小:736.80 KB
- 文档页数:23
七年级数学图形的初步认识复习华东师大版【本讲教育信息】一、教学内容:图形的初步认识复习二、知识要点1、知识点概要〔1〕认识常见的几何体的根本特征,理解棱柱,棱锥等的平面展开图,能根据展开图判断和制作简单的立体图形,能识别简单物体的三视图,会由三视图画出简单的立体图形.〔2〕理解图形的分割和组合.线段、射线、直线等有关概念,特征和表示法、三者的特征和表示法,理解线段中点的定义,以及会进展有关的简单计算.能用圆规、直尺等工具比拟两条线段的长短.〔3〕理解角的有关概念,认识角的表示方法,会进展度、分、秒之间的换算和简单的有关角的计算,会比拟角的大小及分类.〔4〕进一步理解两条直线平行的关系,认识平行线的特征,识别,会用三角尺、量角器,方格纸画平行线,积累操作活动的经历.〔5〕在生动有趣的情境中,通过画、折等活动,进一步丰富两条直线互相垂直的认识,会借助三角尺,量角器,方格纸画垂线,并理解垂直的特征.2、重点、难点〔1〕重点:立体图形与平面图形的联络,以及角、相交线、平行线的有关概念和性质.〔2〕难点:认识立体图形与平面图形之间的联络,以及正确理解角、相交线、平行线的相关概念.三、考点分析〔一〕立体图形1、立体图形〔常见规那么的〕的分类:球体、柱体、锥体.柱体分圆柱与棱柱,锥体分圆锥与棱锥,多面体是由多个面围成的立体图形,多面体具有的顶点数、棱数和面数满足欧拉公式:顶点数+面数-棱数=2.2、立体图形的三视图:〔1〕正视图;〔2〕左视图;〔3〕俯视图.3、立体图形的展开图:将一个多面体沿着它的一些棱剪开,并展成一个平面图形,该图形为这个多面体的平面展开图.同一多面体沿着不同的棱剪开,得到的平面图形的形状一般不同.例如:正方体的展开图就有11种情况.〔二〕平面图形1、生活中常见的平面图形有:〔1〕由曲面围成的封闭图形,如圆、椭圆等;〔2〕由曲线和线段围成的封闭图形,如扇形、弓形等;〔3〕由一些线段首尾顺次相连围成的封闭图形,如三角形、四边形等.2、多边形:由线段围成的封闭图形.如三角形,四边形等.每个多边形都可以分割成假设干个三角形.3、多边形的分割规律:如下图.一般地,对于一个n边形,从一个顶点出发连线分割,可以得到〔n–2〕个三角形;从n边形内部一点与各顶点连线分割,可以得到n个三角形;从n边形边上一点〔与顶点不重合〕与各顶点连线分割,可以得到〔n-1〕个三角形.4、平面图形中的几个重要概念.〔1〕线段;〔2〕射线;〔3〕直线;〔4〕线段的中点;〔5〕角;〔6〕角的平分线;〔7〕补角;〔8〕余角;〔9〕对顶角;〔10〕垂直;〔11〕平行线.5、平面图形中几个重要的符号表示.〔1〕线段;〔2〕射线;〔3〕直线;〔4〕角;〔5〕垂直;〔6〕平行.6、平面图形中的几个重要结论:〔1〕过两点有且只有一条直线.简称两点确定一条直线;〔2〕两点之间,线段最短;〔3〕等角的余角相等;等角的补角相等;〔4〕对顶角相等;〔5〕在同一平面内,经过直线外或者直线上一点,有且只有一条直线与直线垂直;〔6〕直线外一点与直线上各点连接的所有线段中,垂线段最短;〔7〕经过直线外一点,有且只有一条直线与直线平行;〔8〕两条直线都平行于第三条直线,那么这两条直线也互相平行〔平行于同一直线的两直线平行〕;〔9〕同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;〔10〕两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.7、平面图形中的常见计算:〔1〕与线段有关的计算:主要涉及线段中点,线段的和与差的计算.解决线段有关的计算问题,应注意数形相结合.〔2〕与角有关的计算:①角度的单位换算:1周角=360°,1平角=180°,1直角=90°,1°=60′,1′=06'';②角度之间的加减运算.运算中要注意度与度、分与分分别相加减,满60′进1°,借︒1为60′;③余角、补角的计算,应注意a的余角为90°-a,a的补角为180°-A.④与平行线的特征有关的角度计算,主要根据两直线平行,同位角相等、内错角相等以及同旁内角互补等结论进展计算.8、考前须知:〔1〕在同一平面内,两条直线的位置关系只有平行和相交两种情况;〔2〕两点之间的间隔与点到直线的间隔:连结两点的线段的长度..叫两点间的间隔;从直线外一点到这条直线的垂线段的长度..,叫做点到直线的间隔.四、典例精析例1、〔2021,〕如下图是由四个一样的小立方体组成的立体图形,它的左视图是分析:左视图是从左边看到的图.从左边看,可看到两排图形,最前面的一排是一个立方体,后一排是两个立方体.解:C.例2、一辆汽车从小明的面前经过,小明拍摄了一组照片,如下图。
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“几何图形的初步认识”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”是“图形与几何”领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.图形的性质的教学,需要引导学生理解欧几里得平面几何的基本思想,感悟几何体系的基本框架:通过定义确定论证的对象,通过基本事实确定论证的起点,通过证明确定论证的逻辑,通过命题确定论证的结果.要组织学生经历图形分析与比较的过程,引导学生学会关注事物的共性、分辨事物的差异、形成合适的类,会用准确的语言描述研究对象的概念,提升抽象能力,会用数学的眼光观察现实世界;要通过生活中的或者数学中的现实情境,引导学生感悟基本事实的意义,经历几何命题发现和证明的过程,感悟归纳推理过程和演绎推理过程的传递性,增强推理能力,会用数学的思维思考现实世界;要引导学生经历针对图形性质、关系、变化确立几何命题的过程,体会数学命题中条件和结论的表述,感悟数学表达的准确性和严谨性,会借助图形分析问题,形成解决问题的思路,发展模型观念,会用数学的语言表达现实世界.2.本单元教学内容分析冀教版教材七年级上册第二章“几何图形的初步认识”,本章包括八个小节:2.1从生活中认识几何图形;2.2线段、射线、直线;2.3线段长短的比较;2.4线段的和与差;2.5角和角的度量;2.6角大小的比较;2.7角的和与差;2.8平面图形的旋转.“图形的性质”主题通过学习图形的概念,观察图形的特征,经历观察→猜想→验证等过程,以基本图形点、线、面展开研究.认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是画一条线段等于已知线段,作一个角等于已知角,作两个角的和与差.能进行角的度数和线段长度的计算.由于是初中几何入门课,要注重对学生良好学习习惯的培养,一般按照“事物或模型→几何图形→文字表示→符号表示”的教学程序,让学生先理解符号或文字所表达的图形及关系,并把它们用图形直观表示出来,化“无形”为“有形”.“图形与几何”教学的一个重要目标是发展学生的空间观念,培养空间想象力,为了达到教学目标,本章教学要重视让学生从事动手操作、观察、想象、交流等活动,为学生提供有意义、有一定挑战性的学习任务,引导学生获得几何图形的知识和有关技能,为后期学习三角形、平行四边形、圆的相关概念、定理的证明以及几何综合问题等内容的教学起到铺垫作用.同时注意,本章中的一些抽象几何概念只要求学生有一些初步直观的认识,一些基本结论、基本事实也仅要求通过观察、思考、探究等活动归纳得出,仅作“说理”和“简单推理”,不要求达到很高的科学严密程度,这为以后教学逐步提高推理要求做了准备.三、单元学情分析本单元内容是冀教版教材数学七年级上册第二章几何图形的初步认识,学生在小学阶段对立体图形和平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,形成了初步的空间观念和几何直观.这使得本单元的学习之初容易理解,学生的学习兴趣也会很大.但随着学习的深入,对数学的探究意识、数学的抽象能力、推理能力的要求都不断提高.七年级的学生刚从小学过渡到初中,对新知识充满好奇,但还未经历过真正的数学观察、猜想、操作、思考、说理等数学活动,小组合作意识和交流、表达的能力都较弱,所以在教学过程中,要耐心引导,多鼓励学生大胆猜想,勇于表达,初步培养学生积极探索,发现问题,分析问题和解决问题的能力,逐步提高推理能力.本单元难点是对几何问题进行分析并有条理地表达,老师要利用课上多让学生交流,表达,并不断规范,在作业处理中,指出不规范表达的地方,耐心指导学生改正,增强学习信心.四、单元学习目标1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们,发展学生抽象能力.2.经历观察、测量、画图、折纸等活动,了解点、线段、射线、直线和角的有关性质,初步形成空间观念.3.会比较线段的长短和角的大小,掌握判定线段长短和角大小的方法,发展空间观念和几何直观.4.认识角的度量单位,会进行角的换算.5.会计算线段的和与差、角的和与差,并学会用数学知识解决简单几何问题,培养学生的模型观念、应用意识.6.能使用直尺(无刻度)和圆规作线段和角,培养学生的动手能力.7.通过和角的认识相结合认识平面图形的旋转,提高学生的探究力和想象力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
2.2线段2.2.1性质(1)线段公理:两点之间的所有连线中,线段最短; (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离;(3)线段的中点到两端点的距离相等;(4)线段的大小关系和它们的长度的大小关系是一致的; (5)线段的比较:①目测法;②叠合法;③度量法。
2.2.2中点点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。
(下图) (1)M 是线段AB 的中点;(2)AM=BM=0.5AB (或者AB=2AM=2BM )。
2.3直线(1)直线公理:经过两个点有且只有一条直线; (2)过一点的直线有无数条; (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小;(4)直线上有无穷多个点;(5)两条不同的直线至多有一个公共点。
2.4射线(1)射线是向一个方面无限延伸的,一个端点,不可度量,不能比较大小; (2)射线上有无穷多个点;三、几何图形的初步认识1 几何图形的组成2 平面图形线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;体:几何体也简称体。
AMBAOBABtAB2.5直线、射线、线段2.5.1比较2.5.2表示(1)一个点可以用一个大写字母表示,如点A ;(2)一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l 、或者直线 AB ;(3)一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面), 如射线l 、射线AB ;(4)一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l 、线段 AB 。
2.6角 2.6.1定义(1)有公共端点的两条射线组成的图形叫做角; (2)两条射线的公共端点叫做这个角的顶点; (3)这两条射线叫做这个角的边;或:角也可以看成是一条射线绕着它的端点旋转而成的。
2.6.2分类(1)锐角:小于90°的角叫做锐角; (2)直角:90°的角叫做直角;(3)钝角:大于90°,小于180°的角叫做钝角;(4)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角, 平角的度数为180°;(5)周角:终边继续旋转,当它又和始边重合时,所形成的角叫做周角;周角的度数为360°。
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。
4.2 直线、射线、线段一、有关概念:(1) 经过两点有一条直线,并且只有一条直线。
简单说成:两点确定一直线我们经常用一条直线上的两点来表示这条直线。
直线AB 或直线L(2) 当两条不同的直线有一个公共同点时,我们就称为两条直线相交,这个公共点叫做它们的交点。
点P 在直线AB 外,(直线AB 不经过点P) 直线a 和b 相交于点O 点O 在直线AB 上,(直线AB 经过点0) (3) 线段和射线线段AB 或线段a 射线0A 或射线L(3)在数学中,我们常限事实上用无刻度的直尺和圆规作图,这就是尺规作图。
①作一条线段等于已知线段 ②比较两条线段的大小(4)点M 把线段AB 分成线段AB 与MB ,点M 叫做线段AB 的中点。
如果AM=MB 即点M 是线段AB 的中点(5)两点的所有连中,线段最短。
简单说:两点之间,线段最短。
(6)连接两点间的线段的长度,叫做这两点的距离。
BLa boPBoaL概念题1、直线的公理把一根木条用一颗铁钉能固定,使它不能转动吗?。
如果要固定它,你认为至少需要颗铁钉。
经过一点O画直线,能画出条?经过两点A、B能画条。
2、直线的表示方法:直线可有种表示方法,他们分别是:;。
请分别画图说明:3、一个点与一条直线的位置关系:一个点与一条直线会有种位置关系。
他们分别是:,也可以说是;,也可以说是。
请分别画图说明:4、两条不同的直线相交:当两条不同的直线时,称这两条直线相交;是交点。
请分别画图说明:5、射线和线段的表示方法射线和线段都是直线的。
类似于直线的表示方法,射线可有种表示方法,他们分别是:;。
请分别画图说明:线段可有种表示方法,他们分别是:;。
请分别画图说明:6、两点间的距离连接两点间的,叫做这两点的。
(4)4.2 直线、射线、线段(第一课时)认识直线射线线段1.按下列语句画出图形(1)直线EF 经过点C ; (2)点A 在直线d 外(3)经过点O 的三条线段a 、b 、c ; (4)线段AB 、CD 相交于点B 。