普通物理学程守洙第五版 答案共113页文档
- 格式:ppt
- 大小:9.74 MB
- 文档页数:113
第8章恒定电流的磁场8-1已知导线中的电流按I=t2-0.5t+6的规律随时间t变化,式中电流和时间的单位分别为A和s.计算在t=1到t=3的时间内通过导线截面的电荷量.解:根据题意,积分可得通过导线截面的电荷量:.8-2在一个特制的阴极射线管中,测得其射线电流为60μA,求每10s有多少个电子打击在管子的荧屏上.解:由,可得:,即每10秒有个电子打到荧幕上.8-3一铜棒的横截面积为20×80mm2,长为2.0m,两端的电势差为50mV.已知铜的电导率γ=5.7×107S/m.求:(1)它的电阻;(2)电流;(3)电流密度;(4)棒内的电场强度.解:(1)根据电阻定义式,可得铜棒的电阻为:.(2)根据欧姆定律,有电流:.(3)铜棒内,电流密度的大小为:.(4)铜棒内,电场强度的大小为:.8-4一电路如图8-1所示,其中B 点接地,R 1=10.0Ω,R 2=2.5Ω,R 3=3.O Ω,R 4=1.0Ω,求:(1)通过每个电阻的电流;(2)每个电池的端电压;(3)A、D 两点间的电势差;(4)B、C 两点间的电势差;(5)A、B、C、D 各点的电势.图8-1解:(1)由图8-1可知1R ,2R 电阻并联,则并联总电阻:干路中电流:因此,,.(2)每个电池的端电压分别为:,.(3)A、D两点间的电势差为:.(4)B、C两点间的电势差为:.(5)A、B、C、D各点的电势分别为:,,.8-5在地球北半球的某区域,磁感应强度的大小为4×10-5T,方向与铅直线成60°角.求:(1)穿过面积为1m2的水平平面的磁通量;(2)穿过面积为1m2的竖直平面的磁通量的最大值和最小值.解:(1)由题意可知,穿过1m2水平平面的磁通量为:.(2)由=可知:BSθcos当时,;当时,.8-6设一均匀磁场沿Ox轴正方向,其磁感应强度值B=1Wb/m2.求在下列情况下,穿过面积为2m2的平面的磁通量:(1)平面与yz面平行;(2)平面xz面平行;(3)平面与Oy轴平行且与Ox轴成45°角.解:根据题意,如图8-2所示。
第4章 相对论基础4.1 复习笔记一、狭义相对论原理及运动学1.基本原理电磁理论发展的过程中曾认为光传播介质是绝对静止的参考系“以太”。
爱因斯坦在前人实验的基础上提出了狭义相对论的两条基本原理。
(1)相对性原理物理定律在一切惯性参考系中都具有相同的数学表达形式,即所有惯性系对于描述物理现象都是等价的。
(2)光速不变原理在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
相对性原理说明了所有物理定律(除引力外)在不同惯性系间的联系,包括力学定律和电磁定律在内;光速不变原理以光速测量实验为基础,直接否定了伽利略变换,建立了新的坐标变换公式,即洛伦兹变换。
2.洛伦兹变换狭义相对论有相对运动的惯性系间的坐标变换,称为洛伦兹变换。
下面用两个做相对运动的惯性系为例来说明。
图4-1 洛伦兹坐标变换如图4-1所示,坐标系K'(O'x'y'z')已速度v 相对于坐标系K(Oxyz )作匀速直线运动,三对坐标轴分别平行,v 沿Ox 轴正方向,并设Ox 轴与Ox’轴重合,且当t'=t=0时O'与O 点重合。
设P 为被观察的某一事件,在K 系中的观察者看来,它是在t 时刻发生在(x,y,z )处的,而在K'系中的观察者看来,它却是在t'时刻发生在(x',y',z')处的。
这样的同一事件在不同时空坐标之间所遵从的洛伦兹变换为其中v 是两个参考系相对运动速度的大小,且v≤c。
当v<<c 时,式中的分母近似为1,洛伦兹变换就转化为伽利略变换,这正说明洛伦兹变换是对高速运动与低速运动都成立的变换,它包括了伽利略变换。
因此,相对论并没有把经典力学推翻,而只是揭示了它的局限性。
3.狭义相对论的时空观在经典力学中,相对于一个惯性系来说,在不同地点、同时发生的两个事件,相对于另一个与之相对运动的惯性系来说,也是同时发生的。
第9章电磁感应电磁场理论9-1如图9-1所示,通过回路的磁感应线与线圈平面垂直,且指向图面,设磁通量依如下关系变化:φ=6t2+7t+1式中φ的单位为mWb,t的单位为s.求t=2时,回路中的感生电动势的量值和方向.图9-1解:由题意可知,回路中的感生电动势为:当时,电动势为:,方向为逆时针方向(即与设定的回路绕行t s2方向相反).9-2在两平行导线的平面内,有一矩形线圈,如图9-2所示.如导线中电流,随时间变化,试计算线圈中的感生电动势.图9-2解:根据题意建立坐标系,取坐标轴Ox,如图9-3所示.图9-3两电流在x处的磁感应强度大小为:,方向垂直纸面向里.取顺时针为回路的绕行方向,通过面元dS=l1dx的磁通量为:通过矩形线圈的磁通量为:矩形线圈中的感生电动势为:.9-3如图9-4所示,具有相同轴线的两个导线回路,小的回路在大的回路上面距离y 处,y远大于回路的半径R,因此当大回路中有电流,按图示方向流过时,小回路所围面积πr2之内的磁场几乎是均匀的.现假定y以匀速v=dy/dt而变化.(1)试确定穿过小回路的磁通量φ和y之间的关系;(2)当y=NR时(N为整数),小回路内产生的感生电动势;(3)若v>0,确定小回路内感应电流的方向.图9-4解:(1)根据导电线圈轴线上的磁感应强度分布,可得大回路在小回路处产生的磁感应强度:.由题意知,因此在距离大线圈平面y处的磁场可近似为均匀磁场,其次感应强度,则穿过小回路中的磁通量和y之间的关系为:.(2)小回路内产生的感生电动势为:.(3)由榜次定律可判定,当从上向下看时小回路的感应电流为逆时针方向.9-4PM和MN两段导线,其长均为10cm,在M处相接成30°角,若使导线在均匀磁场中以速度v=15m/s运动,方向如图9-5所示,磁场方向垂直纸面向内,磁感应强度为B=25×10-2T,问P、N两端之间的电势差为多少?哪一端电势高?图9-5解:由题意可知,P、N两端之间产生的动生电动势为:即运动导线上P端的电势高,N端电势低.9-5一均匀磁场与矩形导体回路面法线单位矢量e n间的夹角为θ=π/3(如图9-6),已知磁感应强度B随时间线性增加,即B=kt(k>0),回路的MN边长为l,以速度V向右运动,设t=0时,MN边在x=0处.求任意时刻回路中感应电动势的大小和方向.图9-6解:如图9-6所示,回路的面法线e n表明,回路的绕行方向为逆时针,则回路中感应电动势为:.又由题意知:则回路中感应电动势:方向由M指向N,即沿顺时针方向.9-6如图9-7所示,一长直导线通有电流,I=0.5A,在与其相距d=5.0cm处放有一矩形线圈,共1000匝.线圈以速度v=3.0m/s沿垂直于长导线的方向向右运动时,线圈中的动生电动势是多少?(设线圈长l=4.0cm,宽b=2.0cm.)图9-7解:由题意可知,线圈中的动生电动势为:.9-7如图9-8所示,导线MN在导线架上以速度V向右滑动.已知导线MN的长为50cm,V=4.0m/s,R=0.20Ω,磁感应强度B=0.50T,方向垂直于回路平面.试求:(1)MN运动时所产生的动生电动势;(2)电阻R上所消耗的功率;(3)磁场作用在MN上的力.图9-8解:(1)导线上产生的电动势为:.(2)电阻R上所消耗的功率为:.(3)由安培定理,可得回路中电流:导线MN上的安培力:,方向向左.9-8如图9-9所示,PQ和MN为两根金属棒,各长1m,电阻都是R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里.当两根金属棒在导轨上分别以v1=4m/s 和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求:(1)两棒中动生电动势的大小和方向,并在图上标出;(2)金属棒两端的电势差;(3)两金属棒中点O1和O2之间的电势差.。