普通物理学程守洙第五版答案剖析
- 格式:pptx
- 大小:762.29 KB
- 文档页数:111
第5章气体动理论一、选择题1.两种不同的理想气体,若它们的最概然速率相等,则它们的()。
A.平均速率相等,方均根速率相等B.平均速率相等,方均根速率不相等C.平均速率不相等,方均根速率相等D.平均速率不相等,方均根速率不相等【答案】A【解析】因为平均速率、方均根速率与最概然速率一样,都与成正比,成反比。
2.范德瓦耳斯方程中()。
A.实际测得的压强是,体积是VB.实际测得的压强是p,体积是VC.实际测得的压强是p,V是1mol范氏气体的体积D.实际测得的压强是;1mol范氏气体的体积是(V-b)【答案】C3.1mol单原子分子理想气体从状态A变为状态B,如果不知是什么气体,变化过程也不知道,但A、B两态的压强、体积和温度都知道,则可以求出()。
A.气体所做的功B.气体内能的变化C.气体传给外界的热量D.气体的质量【答案】B【解析】单原子分子的自由度i=3,摩尔数ν=1,内能是状态量,只取决于状态(温度);内能的变化只与始末状态有关,与是什么气体,经历什么变化过程无关。
4.按照经典的能均分定理,由刚性双原子分子组成的理想气体的定体摩尔热容量是理想气体常数R的()。
A.1倍B.1.5倍C.2倍D.2.5倍【答案】D【解析】刚性双原子分子的自由度是i=5,其定体摩尔热容量。
5.质量为m,摩尔质量为M的理想气体,经历了一个等压过程,温度增量为ΔT,则内能增量为()。
A.B.C.D.【答案】B二、填空题1.在平衡态下,已知理想气体分子的麦克斯韦速率分布函数为f(υ)、分子质量为m、最概然速率为υp,试说明下列各式的物理意义:(1)表示______;(2)表示______。
【答案】(1)分布在0~∞速率区间的分子数占总分子数的百分比;(2)分子平动动能的平均值。
2.某种刚性双原子分子理想气体,处于温度为T的平衡态,则其分子的平均平动动能为______,平均转动动能为______,平均总能量为______,lmol气体的内能为______。
第8章恒定电流的磁场8-1已知导线中的电流按I=t2-0.5t+6的规律随时间t变化,式中电流和时间的单位分别为A和s.计算在t=1到t=3的时间内通过导线截面的电荷量.解:根据题意,积分可得通过导线截面的电荷量:.8-2在一个特制的阴极射线管中,测得其射线电流为60μA,求每10s有多少个电子打击在管子的荧屏上.解:由,可得:,即每10秒有个电子打到荧幕上.8-3一铜棒的横截面积为20×80mm2,长为2.0m,两端的电势差为50mV.已知铜的电导率γ=5.7×107S/m.求:(1)它的电阻;(2)电流;(3)电流密度;(4)棒内的电场强度.解:(1)根据电阻定义式,可得铜棒的电阻为:.(2)根据欧姆定律,有电流:.(3)铜棒内,电流密度的大小为:.(4)铜棒内,电场强度的大小为:.8-4一电路如图8-1所示,其中B 点接地,R 1=10.0Ω,R 2=2.5Ω,R 3=3.O Ω,R 4=1.0Ω,求:(1)通过每个电阻的电流;(2)每个电池的端电压;(3)A、D 两点间的电势差;(4)B、C 两点间的电势差;(5)A、B、C、D 各点的电势.图8-1解:(1)由图8-1可知1R ,2R 电阻并联,则并联总电阻:干路中电流:因此,,.(2)每个电池的端电压分别为:,.(3)A、D两点间的电势差为:.(4)B、C两点间的电势差为:.(5)A、B、C、D各点的电势分别为:,,.8-5在地球北半球的某区域,磁感应强度的大小为4×10-5T,方向与铅直线成60°角.求:(1)穿过面积为1m2的水平平面的磁通量;(2)穿过面积为1m2的竖直平面的磁通量的最大值和最小值.解:(1)由题意可知,穿过1m2水平平面的磁通量为:.(2)由=可知:BSθcos当时,;当时,.8-6设一均匀磁场沿Ox轴正方向,其磁感应强度值B=1Wb/m2.求在下列情况下,穿过面积为2m2的平面的磁通量:(1)平面与yz面平行;(2)平面xz面平行;(3)平面与Oy轴平行且与Ox轴成45°角.解:根据题意,如图8-2所示。
第4章 相对论基础4.1 复习笔记一、狭义相对论原理及运动学1.基本原理电磁理论发展的过程中曾认为光传播介质是绝对静止的参考系“以太”。
爱因斯坦在前人实验的基础上提出了狭义相对论的两条基本原理。
(1)相对性原理物理定律在一切惯性参考系中都具有相同的数学表达形式,即所有惯性系对于描述物理现象都是等价的。
(2)光速不变原理在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
相对性原理说明了所有物理定律(除引力外)在不同惯性系间的联系,包括力学定律和电磁定律在内;光速不变原理以光速测量实验为基础,直接否定了伽利略变换,建立了新的坐标变换公式,即洛伦兹变换。
2.洛伦兹变换狭义相对论有相对运动的惯性系间的坐标变换,称为洛伦兹变换。
下面用两个做相对运动的惯性系为例来说明。
图4-1 洛伦兹坐标变换如图4-1所示,坐标系K'(O'x'y'z')已速度v 相对于坐标系K(Oxyz )作匀速直线运动,三对坐标轴分别平行,v 沿Ox 轴正方向,并设Ox 轴与Ox’轴重合,且当t'=t=0时O'与O 点重合。
设P 为被观察的某一事件,在K 系中的观察者看来,它是在t 时刻发生在(x,y,z )处的,而在K'系中的观察者看来,它却是在t'时刻发生在(x',y',z')处的。
这样的同一事件在不同时空坐标之间所遵从的洛伦兹变换为其中v 是两个参考系相对运动速度的大小,且v≤c。
当v<<c 时,式中的分母近似为1,洛伦兹变换就转化为伽利略变换,这正说明洛伦兹变换是对高速运动与低速运动都成立的变换,它包括了伽利略变换。
因此,相对论并没有把经典力学推翻,而只是揭示了它的局限性。
3.狭义相对论的时空观在经典力学中,相对于一个惯性系来说,在不同地点、同时发生的两个事件,相对于另一个与之相对运动的惯性系来说,也是同时发生的。