普通物理学第五版第11章磁场答案题.
- 格式:ppt
- 大小:2.68 MB
- 文档页数:146
[物理学11章习题解答]11-7 在磁感应强度大小为b = 0.50 t的匀强磁场中,有一长度为l = 1.5 m的导体棒垂直于磁场向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m⋅s-1 ,试求:(1)导体棒的非静电性电场k;(2)导体棒的静电场e;(3)导体棒的动生电动势ε的大小和向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的向沿棒向上,所以上式的积分可取沿棒向上的向,也就是d l的向取沿棒向上的向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒的非静电性电场,为,向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒的静电场与非静电性电场相平衡,即,所以,e的向沿棒由上向下,大小为.(3)上面已经得到,向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8如图11-12所表示,处于匀强磁场中的导体回路abcd,其边ab可以滑动。
若磁感应强度的大小为b = 0.5 t,电阻为r = 0.2 ω,ab边长为l = 0.5 m,ab边向右平移的速率为v = 4 m⋅s-1 ,求:(1)作用于ab边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻r上的功率。
解(1)当将ab向右拉动时,ab中会有电流通过,流向为从b到a。
ab中一旦出现电流,就将受到安培力f的作用,安培力的向为由右向左。
所以,要使ab向右移动,必须对ab施加由左向右的力的作用,这就是外力f外。
图11-12在被拉动时,ab中产生的动生电动势为,电流为.ab所受安培力的大小为,安培力的向为由右向左。
外力的大小为,外力的向为由左向右。
(2)外力所消耗的功率为.(3)感应电流消耗在电阻r上的功率为.可见,外力对电路消耗的能量全部以热能的式释放出来。
大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第十一章 磁场与介质的相互作用1、试用相对磁导率r 表征三种磁介质各自的特性。
解:顺磁质r >1,抗磁质r <1,铁磁质r >>12、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。
若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。
解:磁场强度大小为H = NI / l .3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。
4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比.解:对于螺绕环有:nI B r μμ0=,nI B 00μ=5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。
忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。
解:⑴沿圆环取安培环路,根据∑⎰=⋅i LI l d H ,得 NI d B HL =+00μ (此处d L >>,忽略空气隙中的B φ分散)于是 m A L d B NI H /60100≈-=μ⑵ H B r μμ0= ,而0B B ≈,37.6620==∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。
习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直;(C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场()(A )静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m=()(A )只适用于无限长密绕线管;(B )只适用于一个匝数很多,且密绕的螺线环;(C )只适用于单匝圆线圈;(D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力;(B )涡旋电场由变化的磁场产生;(C )涡旋场由电荷激发;(D )涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到。
[答案:磁力](2)产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在,这个导线上的电动势最大,数值为;如果转轴的位置在,整个导线上的电动势最小,数值为。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率trd d =80cm/s 收缩时,求回路中感应电动势的大小.解:回路磁通2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m ΦεV 11.4一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场B =80×10-3T,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms内均匀降为零时,求回路中的感应电动势的大小及方向.解:取半圆形cba 法向为i,题11.4图则αΦcos 2π21B R m=同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵B 与i 夹角和B 与j夹角相等,∴︒=45α则αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图11.5如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解:作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴0=MeNM ε即MNMeN εε=又∵⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμM 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势.解:以向外磁通为正则(1)]ln [ln π2d π2d π2000da db a b Il r l r I r l r I ab b a d d m +-+=-=⎰⎰++μμμΦ(2)tI b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解:)cos(2π02ϕωΦ+=⋅=t r B S B m∴Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴RBf r R I m 22π==ε11.8如题11.8图所示,长直导线通以电流I =5A,在其右方放一长方形线圈,两者共面.线圈长b =0.06m,宽a =0.04m,线圈以速度v =0.03m/s垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题11.8图解:AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a I vbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.111(π2-⨯=+-=+=ad d Ibv μεεεV 方向沿顺时针.11.9长度为l 的金属杆ab 以速率v在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解:⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴klvt tm-=-=d d Φε即沿abcd 方向顺时针方向.题11.9图11.10一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解:如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε;题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示.题11.11图11.11导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求:(1)ab 两端的电势差;(2)b a ,两端哪一点电势高?解:(1)在Ob 上取dr r r +→一小段则⎰==320292d l Ob l B r rB ωωε同理⎰==302181d l Oa l B r rB ωωε∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵0>ab ε即0<-b a U U ∴b 点电势高.题11.12图11.12如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则ba b a Iv r r a r Iv l B v b a b a B A AB -+-=-+-=⋅⨯=⎰⎰+-lnd 211(2d )(00πμπμε ∵<AB ε∴实际上感应电动势方向从A B →,即从图中从右向左,∴ba ba Iv U AB -+=ln 0πμ题11.13图11.13磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解:∵bcab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴tB R acd d ]12π43[22+=ε∵0d d >tB∴0>ac ε即ε从ca →11.14半径为R的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题11.14图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量436π(22R R B S B m -=⋅= Φ∴tBR R i d d )436π(22--=ε∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解:由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理,0d >⋅=⎰l E cddc旋ε∴0<-c d U U 即dc U U >题11.16图11.16一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar r Ia μμΦ∴2ln π2012aI M μΦ==11.17两线圈顺串联后总自感为1.0H,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H.试求:它们之间的互感.解:∵顺串时M L L L 221++=反串联时M L L L 221-+='∴M L L 4='-15.04='-=L L M H题11.18图11.18一矩形截面的螺绕环如题11.18图所示,共有N匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少?解:如题11.18图示(1)通过横截面的磁通为⎰==baabNIh r h r NI ln π2d π200μμΦ磁链abIh N N lnπ220μΦψ==∴ab h N I L lnπ220μψ==(2)∵221LI W m =∴ab h I N W m lnπ4220μ=11.19一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时20π2R I B r μ=∴4222002π82R r I B w m μμ==取r r V d π2d =(∵导线长1=l )则⎰⎰===RR m I R r r I r r w W 00204320π16π4d d 2μμπ。
第11章 电磁感应11.1 基本要求 1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。
7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。
8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。
11.2 基本概念1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即Wqε=2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场k E :变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数L ://m L I N I =ψ=Φ6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7互感系数M :211212M I I ψψ== 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。
9磁场能量m W :贮存在磁场中的能量。
自感贮存磁能:212m W LI =磁能密度m w :单位体积中贮存的磁场能量22111222m B w μH HB μ===10位移电流:D d d I dt Φ=s d t∂=∂⎰DS ,位移电流并不表示有真实的电荷在空 间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11位移电流密度:d t∂=∂D j 11.3 基本规律1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。
第十一章 恒定电流的磁场11–19 已知两同心薄金属球壳,内外球壳半径分别为a ,b (a <b ),中间充满电容率为ε的材料,材料的电导率σ随外电场变化,且σ=kE ,其中k 是常数,现将两球壳维持恒定电压V ,求两球壳间的电流强度和电场强度。
解:设内球带电+Q ,外球带电-Q ,由于电场分布具有球对称性,可作半径为r (a <r <b )的同心球面高斯面,如图11-13所示。
由高斯定理可得24rQE επ=(1) 又211d d 4π4πbb aa Q Q V r ab r εε⎛⎫=⋅==- ⎪⎝⎭⎰⎰E r (2)所以4π11VQ a b ε=⎛⎫- ⎪⎝⎭(3) 将(3)式代入(1)式得2()abV E b a r =- (4)由222222222d 4π4π4π4π()a b V I J r E r kE r kb a r σ=⋅====-⎰⎰S J S 沿径向电流强度减小,沿径向有漏电。
11–20 四条平行的载流无限长直导线,垂直地通过一连长为a 的正方形顶点,每根导线中的电流都是I ,方向如图11-14所示,求正方形中心的磁感应强度B 。
解:正方形中心的磁感应强度B 就是各导线所产生的磁感应强度的矢量叠加,又由右手螺旋定则知,中心处磁场强度为B =B 1+B 2+B 3+B 4=2B 1+2B 2,方向如图11-15所示。
其中B 1,B 2的大小为12B B =则磁感应强度B 在水平方向分量为122sin452sin450x B B B ︒-︒==图11–13图11–15II I34I图11–14竖直方向为122cos452cos45y B B B ︒+︒=14cos45B=︒=︒02πIaμ=因此,正方形中心的磁感应强度B 的大小02πy IB=B aμ=方向竖直向上。
11–22 两根导线沿半径方向被引到铁环上A ,D 两点,并与很远处的电源相接,电流方向如图11-17所示,铁环半径为R ,求环中心O 处的磁感应强度。
大学物理第11章填空与选择答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN恒 定 磁 场一.选择题:1.两根长直导线,分别在A 、B 两点垂直穿过纸面。
两导线通有 方向相反大小分别为1 A 和2 A 的电流,如图所示。
试问: 在图中P 点处磁场方向与x 轴的夹角是: ( ) (A )30°; (B )60°; (C )120°; (D )210°。
2.一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )B r 22π; (B )B r 2π ;(C )θπcos 22B r ; ( D )θπcos 2B r 。
3.下列说法正确的是 ( )(A )闭合回路上各点的磁感应强度都为零时,回路内一定没有电流穿过;(B )闭合回路上各点的磁感应强度都为零时,回路内穿过电流的代数和必定为零; (C )磁感应强度沿的积分为零时,回路上各点的磁感应强度必定为零;( D )磁感应强度沿的积分不为零时,。
回路上任一点的磁感应强度都不可能为零。
4.在图(1)和图(2)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且在真空中。
但在图(2)中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则 ( ) (A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰;(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰; (C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰;( D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰。
5.两条通有图示直流电的导线AB 和CD可绕中轴自由转动和沿轴平动,AB 固定不动,若不计重力,CD 将 ( )AB1I 32(A )不动; (B )顺时针转动,同时作靠近AB 的平动; (C )逆时针转动,同时作离开AB 的平动; (D )逆时针转动,同时作靠近AB 的平动。
第十一章 电流与磁场11-1 电源中的非静电力与静电力有什么不同?答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。
而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。
把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。
非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q非F E =。
当然电源种类不同,非F 的起因也不同。
11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。
但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?答:此题涉及知识点:电流强度d sI =⋅⎰j s ,电流密度概念,电场强度概念,欧姆定律的微分形式j E σ=。
设铜线材料横截面均匀,银层的材料和厚度也均匀。
由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E相同。
由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。
电流强度d sI =⋅⎰j s ,铜线和银层的j 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?答:造成这个偏转的原因可以是电场或磁场。
第十一章恒定磁场一. 选择题1.在一平面内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流大小相等,方向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同一平面内,形状如图,在圆心O处产生的磁感应强度大小为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆心处的磁感强度是多少?3. 一圆形回路1及一正方形回路2,圆的直径与正方形边长相等,二者中通有大小相同电流,则它们在各自中心处产生的磁感应强度大小之比为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为θ,则通过半球面S的磁通量(取半球面向外为正)为(A)(B)(C)(D)[ ]5. 如图,无限长载流直导线附近有一正方形闭合曲面S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的大小B将(A) 增大,B增强(B) 不变,B不变(C) 增大,B不变(D) 不变,B增强[ ]6. 取一闭合积分回路L,使若干根载流导线穿过它所围成的面,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a端流入而从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. 一电荷为q的粒子在均匀磁场中运动,下列说法正确的是(A) 只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒子受力反向,数值不变(C) 粒子进入磁场后,其动能和动量都不变(D) 洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒子,以速度v垂直射入均匀磁场中,则粒子运动轨道包围范围的磁通量与磁感应强度的大小之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与一圆形电流共面,并与其一直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有一载流圆线圈,其既不受力也不受力矩作用,这说明(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直[ ]注意见P325 第二段表述,11.36式12. 用细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任一点(A) 磁感应强度大小为(B) 磁感应强度大小为(C) 磁场强度大小为(D) 磁场强度大小为[ ]二. 填空题13.如图,电流元在P点产生的磁感应强度的大小为___________________.14. 真空中有一载有电流I的细圆线圈,则通过包围该线圈的闭合曲面S的磁通量Φ=________________. 若通过S面上某面元的磁通为,而线圈中电流增加为2I时,通过该面元的磁通为,则_______________.0 ; 1︰215. 如图,两平行无限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度大小,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲面的积分等于零,其数学表示式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. 一长直螺线管是由直径的导线密绕而成,通以的电流,其内部的磁感应强度大小B =_____________________.(忽略绝缘层厚度)18. 带电粒子垂直磁感应线射入匀强磁场,它做______________运动;带电粒子与磁感应线成300角射入匀强磁场,则它做__________________运动;若空间分布有方向一致的电场和磁场,带电粒子垂直于场方向入射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的方向垂直(如图).如果上表面的电势较高,则导电体中的载流子带___________电荷;如果下表面的电势较高,则导电体中的载流子带___________电荷.正;负20. 如图,一载流导线弯成半径为R的四分之一圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场力大小为______________,方向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平面平行指向右的均匀磁场中,该载流线圈磁矩大小为___________,方向____________;线圈所受磁力矩的大小为_________________,方向_____________.;垂直纸面向外;;向上22. 磁场中某点,有一半径为R、载有电流I的圆形实验线圈,其所受的最大磁力矩为M,则该点磁感应强度的大小为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中一根导线与z轴重合,另一与x轴平行且在Oxy平面内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产生的磁感应强度方向一沿z轴方向,一沿x轴负方向且方向平行于Oxz平面与Oxy面成45o,如图示。
第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。
A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。
解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。
2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。
A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。
解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。
故选B。
3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。
A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。
解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。
故选B 。
4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。
A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。
解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。
第十章波动1 . 一横波沿绳子传播时的波动表达式为)π4π10cos(05.0x t y -=,x ,y 的单位为米,t 的单位为秒。
(1)求此波的振幅、波速、频率和波长。
(2)求绳子上各质点振动的最大速度和最大加速度。
(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t xy t x =-=- 与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=ν Hz ,波长5.0=λ m 。
波速5.255.0=⨯==λνu m •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νω m •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s-(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯, 2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=t s 时的相位。
2.设有一平面简谐波 )3.001.0(π2cos 02.0x t y -= , x ,y 以m 计, t 以s 计。
(1)求振幅、波长、频率和波速。
(2)求1.0=x m 处质点振动的初相位。
解(1)将题设平面简谐波的表式)3.001.0(π2cos 02.0xt y -=与一般表式)(π2cos λxT t A y -=比较,可得振幅02.0=A m ,波长3.0=λ m ,周期01.0=T s 。
因此频率10001.011===T νHz , 波速 301003.0=⨯==λνu m ·s -(2)将1.0=x m 代入波动表式,得到位于该处的质点的振动表式4题图)3π201.0π2cos(02.0)3.01.001.0(π2cos 02.0-=-=t t y 因而该处质点振动的初相位3π20-=ϕ。
第九章 振动9-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).题9-5 图9-6 有一个弹簧振子,振幅m 10022-⨯=.A ,周期s 01.=T ,初相4/π3=.试写出它的运动方程,并作出t x -图、t -v 图和t a -图.题9-6 图分析 弹簧振子的振动是简谐运动.振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量.求运动方程就要设法确定这三个物理量.题中除A 、ϕ已知外,ω可通过关系式T ω/π2=确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因T ω/π2=,则运动方程()⎪⎭⎫ ⎝⎛+=+=t π2cos cos T A t ωA x 根据题中给出的数据得 ()()m 75.0π2cos 100.22πt x +⨯=-振子的速度和加速度分别为()()-12s m π75.0π2sin 10π4d /d ⋅+⨯-==-t y x v()()-1222s m π75.0π2cos 10π8d /d ⋅+⨯-==-t y x a t x -、t -v 及t a -图如图所示.9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x c o s作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==9-9 设地球是一个半径为R 的均匀球体,密度33m kg 1055-⋅⨯=.ρ.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证 (1) 取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为2x m m G F x -= 式中G 为引力常量,x m 是以x 为半径的球体质量,即3/π43x ρm x =.令3/π4Gm ρk =,则质点受力kx Gmx ρF -==3/π4因此,质点作简谐运动.(2) 质点振动的周期为s 1007.5/π3/π23⨯===ρG k m T9-10 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.题9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ (1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为()()111222sin sin x x k mg x x k mg F '+-='+-=θθ (2) 将式(1)代入式(2)得1122x k x k F '-='-= (3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到 ()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9 -11 在如图(a )所示装置中,一劲度系数为k 的轻弹簧,一端固定在墙上,另一端连接一质量为1m 的物体A ,置于光滑水平桌面上.现通过一质量m 、半径为R 的定滑轮B (可视为匀质圆盘)用细绳连接另一质量为2m 的物体C .设细绳不可伸长,且与滑轮间无相对滑动,求系统的振动角频率.题9-11 图分析 这是一个由弹簧、物体A 、C 和滑轮B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体A 相连的弹簧一端所在位置为坐标原点O ,此时弹簧已伸长0x ,且g m kx 20=.当弹簧沿x O 轴正向从原点O 伸长x 时,分析物体A 、C 及滑轮B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方程,然后求得系统作简谐运动的微分方程.解1 在图(b )的状态下,各物体受力如图(c )所示.其中()i F 0x x k +-=.考虑到绳子不可伸长,对物体A 、B 、C 分别列方程,有()22101d d tx m x x k F T =+-= (1) 22222d d tx m F g m T =- (2) ()2212d d 21tx mR J R F F T T ==-α (3) g m kx 20= (4)方程(3)中用到了22T T F F '=、11T T F F '=、22/mR J =及R a /=α.联立式(1) ~式(4)可得02d d 2122=+++x m m m k t x / (5) 则系统振动的角频率为 ()221//m m m k ++=ω解2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离x (此时速度为v 、加速度为a )为末状态,则由机械能守恒定律,有()20222212021212121x x k ωJ m m gx m E +++++-=v v 在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得()tx x x k t ωωJ t m t m g m d d d d d d d d 00212+++++-=v v v vv 将22/mR J =,v =R ω,22d /d d /d t x t =v 和02kx g m = 代入上式,可得 02d d 2122=+++x m m m k t x / (6) 式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x c o s 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m /3π4t π4cos 100.22+⨯=-x 9-13 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即ω=k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题9-13 图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1) 设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π=0(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为 ()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π2=0t ω+=p 0p . (3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .9-15 作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到x =A /2 处;(3) 由x =A /2处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O .(1) 平衡位置x 1 到最大位移x 3 处,图中的旋转矢量从位置1 转到位置3,故△φ1=2/π,则所需时间 411//T t =∆=∆ωϕ(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1转到位置2,故有△φ2=6/π,则所需时间1222//T t =∆=∆ωϕ(3) 从x 2 =A /2 运动到最大位移x 3 处,图中旋转矢量从位置2 转到位置3,有△φ3=3/π,则所需时间633//T t =∆=∆ωϕ题9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为0.50s,振幅为2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力P 和板支持力F N 作用,F N 是一个变力.按牛顿定律,有22d d ty m F mg F N =-= (1) 由于物体是随板一起作简谐运动,因而有()ϕωω+-==t A ty a cos d d 222,则式(1)可改写为()ϕωω++=t mA mg F N cos 2 (2)(1) 根据板运动的位置,确定此刻振动的相位ϕω+t ,由式(2)可求板与物体之间的作用力.(2) 由式(2)可知支持力N F 的值与振幅A 、角频率ω和相位(ϕω+t )有关.在振动过程中,当π=+t ω时N F 最小.而重物恰好跳离平板的条件为N F =0,因此由式(2)可分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ϕω+t =0,物体受板的支持力为()N 9612222./=+=+=t mAmg mA mg F N πω 重物对木块的作用力N F ' 与N F 大小相等,方向相反. (2) 当频率不变时,设振幅变为A ′.根据分析中所述,将N F =0及π=+t ω代入分析中式(2),可得m 102.6π4//2222-⨯==='gT ωm mg A(3) 当振幅不变时,设频率变为v '.同样将N F =0及π=+t ω代入分析中式(2),可得Hz 52.3/π21π22==='mA mg ωv 9-17 两质点作同频率、同振幅的简谐运动.第一个质点的运动方程为()ϕω+=t A x cos 1,当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题9-17 图解 图示为两质点在时刻t 的旋转矢量图,可见第一个质点M 的相位比第二个质点N 的相位超前2/π,即它们的相位差Δφ=π/2.故第二个质点的运动方程应为()2cos 2/πϕω-+=t A x9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.解 (1) 由ωA v =max 得1s 51-=.ω,则 s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3) 从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为 ()()cm 6/π55.1cos 2-=t x题9-18 图9-19 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?题9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分.解 (1) 单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2) 由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3) 摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为 1s 2180/d d --==.t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为2.00s),拿到月球上去,如测得周期为4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度2E s m 809-⋅=.g )解 由单摆的周期公式g l T /π2=可知21T g /∝,故有2M 2E E M T T g g //=,则月球的重力加速度为()2E 2M E M s m 631-⋅==./g T T g9-21 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/mgrT J =.则由平行轴定理得222220m kg 8324⋅=-=-=./mr mgrT mr J J π9-22 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m-1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为()12110s m 01-⋅=+=.m m v m v又因初始位移x 0 =0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x9-23 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1 的空盘.现有一质量为m 2 的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?题9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1 变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0 和初始位移x 0 是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2) 如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-= 式中l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()212202021/m m kh k g m ωx A ++='+=v 本题也可用机械能守恒定律求振幅A .9-24 如图所示,劲度系数为k 的轻弹簧,系一质量为m 1 的物体,在水平面上作振幅为A 的简谐运动.有一质量为m 2 的粘土,从高度h 自由下落,正好在(a )物体通过平衡位置时,(b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题9-24图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式()2020/ωx A v +=)求得两种情况下的振幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为 k m ωT /π2/π21== ()k m m ωT /π2/π221+='='物体粘上粘土后的周期T ′比原周期T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式2/2/212v m A k =' (1)()2/2/2212v '+='m m A k (2)()v v '+=211m m m (3)联立解上述三式,可得 ()A m m m A 211+='/即A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即A ′=A9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.m Aa m A E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为 4221212P /E A k kx E =⎪⎭⎫ ⎝⎛==则动能为 43P K /E E E E =-= 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度v =-A ωsin (ωt +φ),故氢原子振动的最大速度为12max s m 1028.62-⋅⨯===A πA ωv v(2) 氢原子的振动能量J 1031.32/202max -⨯==v m E9-27 质量m =10g 的小球与轻弹簧组成一振动系统, 按()()cm 3/ππ85.0+=t x 的规律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将()()cm 3/ππ85.0+=t x 与()ϕω+=t A x cos 比较后可得:角频率1s π8-=ω,振幅A =0.5cm ,初相φ=π/3,则周期T =2π/ω=0.25 s(2) 简谐运动的能量 J 1090721522-⨯==.ωmA E (3) 简谐运动的动能和势能分别为()ϕωω+=t mA E K 222sin 21 ()ϕωω+=t mA E P 222cos 21 则在一个周期中,动能与势能对时间的平均值分别为()J 109534d sin 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T K ()J 109534d cos 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T P 9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=/ 解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位 ()()[]rad1.48arctan11cos cos sin sin arctan22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得(),...2,1,0,π25.1π2π1223±±=+=++=k k k9-29 手电筒和屏幕质量均为m ,且均被劲度系数为k 的轻弹簧悬挂于同一水平面上,如图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为()11cos ϕω+=t A x 和()22cos ϕω+=t A x .试求在下述两种情况下,初相位φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有屏对地光对屏光对地x x x +=依题意()()2211ϕωϕω+==+==t A x x t A x x cos cos 屏对地光对地所以 ()()212121cos cos ϕπωϕω++++='+=-=t A t A x x x x x 光对屏 可见光点对屏的运动就是两个同方向、同频率简谐运动()11c o sϕω+=t A x 和()22cos ϕπω++='t A x 的合成.用与上题相同的方法即可求解本题.其中合运动振幅()12222πcos 2-+++='A A A A .解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即0=光对屏x ,就是当()π12π12+=-+k 时,即π212k +=时(,...,,210±±=k ),A ′=0.当光点相对于屏作振幅为2A 的运动时,要求π2π12k =-+,即()π1212-+=k . (2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步,即同相位,为此,把它们往下拉A 位移后,同时释放即可;同理,要使光点对屏作振幅为2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点0 上方的-A 处,而屏则位于+A 处同。
第11章 稳恒磁场习 题一 选择题11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ](A )10B =,20B =(B )10B =,02IB lπ=(C)01IB lπ=,20B =(D)01I B l π=,02IB lπ= 答案:C解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4IB dμθθπ=-,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算01IB lπ=,20B =。
故正确答案为(C )。
11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ]习题11-1图习题11-2图(A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为0/2B I R =。
11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ](A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=⋅=。
故正确答案为(C )。
11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ何变化?[ ](A )Φ增大,B 也增大 (B )Φ不变,B 也不变 (C )Φ增大,B 不变 (D )Φ不变,B 增大I习题11-4图习题11-3图答案:D解析:根据磁场的高斯定理0SBdS Φ==⎰,通过闭合曲面S 的磁感应强度始终为0,保持不变。
第十一章光学1、在双缝干涉实验中,两缝间距为mm 30.0,用单色光垂直照射双缝,在离缝m 20.1的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为mm 78.22,问所用光的波长为多少?解:双缝干涉暗纹条件'(21)2d x k dl=±+ (0,1,2,)k =×××中央明纹一侧第5条暗纹对应于4=k ,由于条纹对称,该暗纹到中央明纹中心的距离为mm 39.11278.22==x 那么由暗纹公式即可求得那么由暗纹公式即可求得337'2211.39100.3010 6.32810m 632.8nm (21)1.20(241)xd d k l ---´´´´===´=+´´+2、用白光垂直入射到间距为mm 25.0=d 的双缝上,距离缝m 0.1处放置屏幕,求零级明纹同侧第二级干涉条纹中紫光和红光中心的间距(白光的波长范围是nm 760~400)。
解:第k 级明纹位置应满足'd x kdl = ),2,1,0(×××±±=k对紫光和红光分别取nm 4001=l ,nm7602=l ;则同侧第二级条纹的间距;则同侧第二级条纹的间距'3621 1.010()2(760400)102.88mm 0.25d x kdl l -´D =-=´´-´=3、用58.1=n的透明云母片覆盖杨氏双缝干涉装置的一条缝,若此时屏中心为第五级亮条纹中心,设光源波长为μm 55.0,(1)求云母片厚度。
(2)若双缝相距mm 60.0,屏与狭缝的距离为m5.2,求0级亮纹中心所在的位置。
解:(1)由于云母片覆盖一缝,使得屏中心处的光程差变为l 5=D ,一条光路中插入厚度为e 的透明介质片光程变化e n )1(-。