几种荧光猝灭的方式
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
5.荧光熄灭(猝灭)Fluorescence spectra ( -) of TPP and absorption spectra (---) of ETH5294 in plasticized PVC membrane: a. Excitation spectrum of TPP; b. Emission spectrum of TPP; c. Unprotonated ETH5294; d. Protonated ETH5294.荧光物质分子与溶剂或其它溶质分子相互作用,引起荧光强度降低甚至消失的现象。
1)动态猝灭2)静态猝灭3)荧光能量转移4)内滤效应1)动态猝灭动态猝灭(或碰撞猝灭)指激发态荧光分子与环境分子动态接触而使荧光分子由激发态通过非辐射跃迁回到基态的现象。
常见猝灭剂包括O2、I-、Cs+、丙烯酰胺。
Sterm-Volmer方程:F0初始荧光;F猝灭后荧光;Q猝灭剂;Ksv猝灭常数动态猝灭使荧光寿命降低Kq为双分子猝灭速率常数,正比于两分子扩散系数和;t为无猝灭时荧光寿命。
一般而言:2)静态猝灭静态猝灭(或基态复合物猝灭)指基态态荧光分子与环境分子结合形成稳定的、无荧光的复合物的现象。
Ka为复合物的结合常数静态猝灭只是改变荧光分子数目,而不改变荧光分子寿命所谓荧光共振能量转移(fluorescence resonance energy transfer ,FRET)是指当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光,同时供体荧光分子自身的荧光强度衰减的现象。
3) 荧光共振能量转移能量传递的效率:R0 :Foster临界距离,为能量传递达到50% 的距离用途:应用能量转移测量分子内和分子间的距离(一般测量距离为0.5~1.5R0)5)自熄灭与自吸收**hv hv DD D D −→←++−→←当荧光物质的浓度大于1g/L 时,常发生荧光的自熄灭(浓度熄灭)自吸收:由于φF < 1,使荧光强度减弱或消失.D)(D D D 11**−→←+形成二聚体:由于二聚体不发荧光,或发射荧光的能量有改变,造成自熄灭现象。
荧光猝灭机理介绍•荧光猝灭是指某些物质在光激发后,荧光强度消失或减弱的现象。
•研究荧光猝灭机理对于理解光电转换和光谱分析等领域具有重要意义。
荧光猝灭机理的分类动态猝灭1.基态猝灭–分子间相互作用引起的基态猝灭称为静态猝灭。
–基态猝灭主要包括自相互作用和相异构体猝灭。
2.激发态猝灭–激发态猝灭是通过能量传递的方式,使得荧光能量被转移至另一个分子或物质中。
–激发态猝灭包括物质本身的激发态猝灭和引起分子间相互作用的激发态猝灭。
静态猝灭1.自相互作用–自相互作用主要包括分子内自猝灭和分子间相互作用导致的自猝灭。
–分子内自猝灭通常是由于分子结构的特殊性质引起的,如紧密堆积、光共振等。
–分子间相互作用导致的自猝灭可以是分子之间的电子能级重叠引发的,也可以是分子间的非辐射能量传递引起的。
2.相异构体猝灭–相异构体猝灭是指同一分子具有两种或多种不同的构象,其中一种构象具有荧光性质,而其他构象则不具有荧光性质。
–相异构体猝灭通常是由于构象间共振耦合引起的。
荧光猝灭机理的研究方法光谱法1.斯托克斯位移–斯托克斯位移是指荧光峰峰值位置与激发峰峰值位置之间的差值。
–通过观察斯托克斯位移的大小和变化,可以推测荧光猝灭机理。
2.荧光寿命–荧光寿命是指荧光消失的时间。
–荧光寿命的变化可以用来探索荧光猝灭的速率和机理。
热力学法1.溶剂效应–溶剂对荧光猝灭有显著影响。
–通过研究在不同溶剂中的荧光猝灭行为,可以了解溶剂效应对荧光猝灭机理的影响。
2.温度效应–温度对荧光猝灭有重要影响。
–通过改变温度,可以探索温度对荧光猝灭速率和机理的影响。
荧光猝灭应用领域1.生物医学领域–荧光猝灭技术在生物医学研究中有广泛应用,包括分子探针、荧光染料和荧光标记等方面。
–通过研究荧光猝灭机理,可以设计更高效的荧光探针,提高生物医学检测的准确性和灵敏度。
2.材料科学领域–荧光猝灭技术在材料科学中有重要的应用,如电子器件、能源材料等。
–研究荧光猝灭机理对于设计新型材料和提高材料性能具有重要意义。
如果这种能量传递不有效的话,可能荧光就强。
另外金的plasmon也会增强荧光材料的光吸收,可能会增强荧光总强度。
这两个竞争过程除了与波长有关外,朱要与距离有关,一般5纳米是界限,距离短被淬灭荧光淬灭有以下几种说法:1. 动态淬灭(碰撞淬灭,淬灭剂与发光物质的激发态分子之间的相互作用)2. 静态淬灭(发光分子基态和淬灭剂形成不发光的基态络合物)3. 转入三重态淬灭4. 自吸淬灭(浓度高时,自淬灭)首先确定荧光物质是否有电性,就是说荧光物质是否带有电荷,而且贵金属,例如纳米金,在制作过程中,表面由于有柠檬酸根而带有负电荷,可以和带正电荷的荧光物质,如带正电荷水溶性荧光共轭聚合物,通过静电作用,而使荧光猝灭;如果带相同电荷或者一方不带电荷,猝灭是不怎么明显的。
可以这样说,这种猝灭,是通过电荷作用相互吸附在一起,你可以让两者相互作用后,做一个TEM,就可以判断了。
荧光淬灭有动态淬灭和静态淬灭两种,稳态的荧光强度都显示出荧光强度的衰减,无法分辨,而动态淬灭至少分裂为2个荧光寿命,意味着能量转移的发生,而静态淬灭只是淬灭剂与荧光物结合生成非荧光物质,荧光寿命并不发生变化。
Acrylamide和碘离子分别用于疏水淬灭或亲水淬灭,测量蛋白质中Trp残基荧光淬灭的寿命,能够轻易的得知Trp残基是位于蛋白质表面还是内部。
荧光淬灭多用于分析大分子或胶体的结构或构象,用淬灭的方法研究荧光基团在分子内还是分子表面,有个淬灭的方程,一时写不出来,大概是淬灭剂浓度和荧光变化的关系,有个K常数,和淬灭效率和荧光寿命有关,如果分子构型改变,K会变化,这样就可以用来研究某些化合物对大分子构型或构象的影响。
荧光漂白,就是用强光把荧光素的激发态全部给消除了,有可逆和不可逆两种,可逆的漂白相当于清理出一个没有荧光的区域,相当于荧光清零,然后再观察测量某种特定的荧光的扩散、产生或恢复。
漂白是否可以恢复依赖于荧光素的种类和漂白光强,作为副作用,荧光素的漂白常会发生。
几种荧光猝灭的方式荧光猝灭是指在某些特定条件下,荧光物质的荧光强度会减弱或消失的现象。
荧光猝灭可以通过多种方式实现,下面将介绍几种常见的荧光猝灭方式。
一、静态猝灭静态猝灭是指在分子间存在非辐射能量转移的情况下,荧光物质的荧光强度会减弱或消失。
这种猝灭方式常见的机制有电子传递、能量传递和荧光共振能量转移等。
其中,电子传递是指由于电子给体和受体之间的能级差异,导致受体吸收电子给体的激发能量,使得电子给体的荧光被猝灭。
能量传递是指能量从荧光物质传递到其他分子或物质上,使荧光被猝灭。
荧光共振能量转移是指荧光物质与另一种分子之间存在共振能量转移的情况下,荧光被猝灭。
二、动态猝灭动态猝灭是指在溶液中,荧光物质的荧光强度会随着时间的推移逐渐减弱或消失。
这种猝灭方式常见的机制有自由基猝灭、氧气猝灭和分子碰撞猝灭等。
自由基猝灭是指由于自由基与荧光物质之间的反应,使荧光被猝灭。
氧气猝灭是指荧光物质与氧气之间的化学反应导致荧光被猝灭。
分子碰撞猝灭是指荧光物质与其他分子之间的碰撞,导致荧光被猝灭。
三、金属离子猝灭金属离子猝灭是指金属离子与荧光物质之间的相互作用,导致荧光被猝灭。
常见的金属离子猝灭方式有静态猝灭和动态猝灭。
静态猝灭是指金属离子与荧光物质之间形成络合物,使荧光被猝灭。
动态猝灭是指金属离子与荧光物质之间发生电子传递或能量传递的过程,导致荧光被猝灭。
四、溶剂效应猝灭溶剂效应猝灭是指溶剂对荧光物质荧光强度的影响。
常见的溶剂效应猝灭方式有静态猝灭和动态猝灭。
静态猝灭是指溶剂分子与荧光物质之间发生相互作用,导致荧光被猝灭。
动态猝灭是指溶剂分子与荧光物质分子之间发生碰撞,导致荧光被猝灭。
以上所述是几种常见的荧光猝灭方式,每种方式都有不同的机制和特点。
了解这些猝灭方式对于研究荧光物质的性质和应用具有重要意义。
在实际应用中,可以通过调节实验条件,选择合适的猝灭方式,来实现对荧光的控制和调节,从而实现更多的应用。
荧光猝灭机理荧光猝灭是指在荧光体发射荧光时,由于某些原因导致发出来的荧光被猝灭,从而减小了发光强度。
荧光猝灭机理有很多种类型,以下将分别进行介绍。
1.动态猝灭动态猝灭是指在荧光体分子发射荧光时,可通过某些外部冲击和蛋白质分子运动中的碰撞而发生的荧光猝灭。
这种机理是由于荧光物质的分子结构中不同的化学键所包含的键级和结合能量是不同的,它们对动态猝灭过程中的快速电子转移有不同的敏感度,因此在不同环境下导致的动态猝灭机率是不同的。
2.静态猝灭静态猝灭是指荧光体分子在两分子之间的离子对形成后发生的荧光猝灭现象。
这种机理是由于在静态猝灭过程中,荧光分子中的电子能够被氧分子很容易地离子化形成能量较高的离子对,然后离子对散布能量,进而导致荧光发射强度降低。
3.夫兰芒瑞猝灭夫兰芒瑞猝灭是指荧光体分子与周围的氧气分子相互作用而导致的荧光猝灭现象,这是一种较为常见的猝灭机理。
这种机理是由于氧气分子与荧光分子接触时,荧光体中的电子可以被氧分子很容易地有选择性地吸收,然后发射能量较高的电子,导致荧光发射强度降低。
4.能量转移猝灭能量转移猝灭是指在某个分子中有人员被激发发射荧光,但这样的荧光并不会被传递到旁边的荧光体来发射,而是通过能量转移从一个分子传递到另一个分子中,从而导致荧光猝灭现象的发生。
这种机理是由于荧光分子与旁边分子之间可以发生电子和能量传递而导致的。
总的来说,荧光猝灭现象是分子内、分子间和分子与周围热环境之间电子和能量传递的结果。
分子环境的种类和热力学参数的变化都能导致荧光分子发生不同类型的荧光猝灭,通过对不同类型荧光猝灭的深入研究,可以揭示分子内电子和能量转移的机理,寻找应用荧光分子的新途径,进一步将其应用于成像、诊断等方面。
荧光猝灭原理溶解氧传感器
荧光猝灭原理是指在溶液中,荧光分子与氧分子发生相互作用,导致荧光熄灭的现象。
溶解氧传感器利用了这一原理来测量溶液中的溶解氧含量。
溶解氧传感器通常由荧光团和敏感层组成。
荧光团是一种具有荧光特性的物质,可以发出特定波长的荧光信号。
而敏感层则是含有荧光团的材料,可以与氧分子发生相互作用。
当氧分子存在时,它会与敏感层中的荧光团发生化学反应,导致荧光信号的猝灭。
具体来说,敏感层中的荧光团会与氧分子发生动态猝灭,即在荧光团发出荧光之前就被氧分子猝灭掉。
这样就导致了荧光信号的减弱或完全熄灭。
通过测量荧光信号的变化,可以得到溶液中的溶解氧含量。
溶解氧传感器可以通过监测荧光强度的变化来实时测量溶液中的溶解氧含量。
常见的应用包括水质检测、生物医学研究等领域。
需要注意的是,溶解氧传感器的灵敏度和稳定性受到许多因素的影响,如传感器的设计、荧光团的选择和敏感层的性能等。
因此,在实际应用中需要针对具体的研究对象和环境条件选择合适的溶解氧传感器。
荧光猝灭一般有静态猝灭和动态猝灭。
可以通过测定猝灭常数与温度的关系来区分。
静态猝灭是由于猝灭剂与荧光基团发生了结合生成不发荧光的物质,因而当温度升高的时候,体系紊流程度增加,导致猝灭常数减小;而动态猝灭是由于猝灭剂与荧光基团发生碰撞导致荧光强度减少,因而当温度升高,进而体系紊流增大是碰撞加剧,从而猝灭常数增大。
你可以查找相关文献比如Y.-Q. Wang, H.-M. Zhang, G.-C. Zhang, W.-H. Tao, S.-H. Tang, Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study, Journal of Luminescence, 126 (2007) 211-218.无论是动态猝灭还是静态猝灭,F0/F与之间均存在着线性关系,单独通过测量荧光强度所得到的荧光猝灭数据而没有提供其他信息的情况下,是很难判断所发生的猝灭现象究竟属于动态猝灭还是静态猝灭。
通常需要提供猝灭现象与寿命、温度和粘度的关系及吸收光谱的变化情况等信息。
(1) 变温实验动态猝灭由于与扩散有关,而温度升高时溶液的粘度下降,同时分子的运动加速,其结果将使分子的扩散系数增大,从而增大双分子猝灭常数。
反之,温度升高可能引起配合物的稳定度下降,从而减小静态猝灭的程度。
根据Stern-V olmer方程作图,如果高温的斜率大于低温的斜率,则为动态猝灭;反之,则为静态猝灭。
(2) 测量吸收光谱动态猝灭只影响到荧光分子的激发态,因而并不改变荧光物质的吸收光谱;而在静态猝灭中,基态配合物的生成往往将引起荧光物质吸收光谱的改变。
(3) 测量荧光寿命静态猝灭过程中猝灭剂的存在并不改变荧光分子激发态的寿命,τ0/τ=1。
而动态猝灭,猝灭剂的存在使荧光寿命缩短,τ0/τ=F0/F。
区分静态猝灭与动态猝灭最确切的方法是寿命的测定,但由于目前的实验条件所限,荧光寿命的测量一般不易进行。
浓度猝灭
浓度猝灭concentration quenching
当激活剂浓度较大时,中心间的距离小于临界距离,它们就会产生级联能量传递,即从一个中心传递到下一个中心,再到下一个中心......(发生能量迁移)直到最后进入一个猝灭中心,导致发光的猝灭,我们把这种猝灭叫做浓度猝灭。
何为猝灭?
由于某些原因使发光材料发生非辐射跃迁,从而降低了发光效率的现象叫做猝灭,猝灭的原因可以各不相同,常见的有温度猝灭,浓度猝灭和杂质猝灭等。
物理机制包括合作上转化(cooperative up-conversion)、交叉驰豫(cross-relaxation)以及能级转化(energy transfer)等。
温度猝灭
温度猝灭 Temperature quenching
温度猝灭也称为热猝灭是指对于各种发光材料,随着温度的上升,其发光强度下降,发射光谱红移。
发光材料发生热猝灭的可能有多种原因, 但起主要作用的一般是两个方面:一是由于温度的升高, 晶格振动加剧, 从而使发光中心的晶格弛豫增强, 无辐射跃迁几率增大, 发光效率降低, 这是人们通常所说的) 温度特性; 二是由于温度升高, 使发光中心的状态或周围的微环境发生某种本质性变化, 从而降低了发光效率, 即人们通常所说的“热稳定性”。
目前,各种商品荧光粉使用在荧光灯上由于长时间照射温度升高,发生温度猝灭,使其荧光性能越来越低,这就是为什么荧光灯用久之后会变暗的原因。