总体分布与样本分布
- 格式:ppt
- 大小:185.02 KB
- 文档页数:5
统计学简答题1、统计的含义与本质是什么?(1)“统计"一词可以有三种含义:统计活动、统计数据、统计学统计活动是对各种统计数据进行收集、整理并做出相应的推断、分析的活动,通常被划分为统计调查、统计整理、和统计分析三个阶段;统计数据是通过统计活动获得的,用以表现研究现象特征的各种形式的数据;统计学则是指导统计活动的理论和方法,是关于如何收集、整理和分析数据的科学.(2)统计的本质是关于为何统计,统计什么,和如何统计的思想.2、统计学的学科性质:1、统计学就其研究对象而言,具有数量性、总体性和差异性的特点。
统计学的研究对象是各种现象的数量方面.2、统计学就其学科范畴而言,具有方法性、层次性和通用性的特点。
3、统计学就其研究方式而言,具有描述性和推断性的特点。
3、总体、样本、个体三者关系如何?试举例说明。
总体:就是统计研究的客观对象的全体,是由所有具有某种共同性质的事物所组成的集合体,有时也称为母体;样本:就是从总体中抽区的一部分个体所组成集合,也称为子样;组成总体的每个个别事物就称为个体,也称为总体单位。
(1)总体与个体的关系(可变性)总体容量随着个体数的增减可变大或变小;随着研究目的的不同,总体中的个体可发生变化;随着研究范围的变化,总体与个体的角色可以转换/(2)样本与总体的关系样本是所要研究的对,而样本则是所要观测的对象,样本是总体的代表和缩影。
样本是用来推断总体的.总体和样体的角色是可以改变的.4、理解标志、指标、变量三者的含义?标志与指标的联系与区别?标志是用以描述或体现个性特征的名称;统计指标简称指标,是反映现象总体数量特征的概念及其数值;从狭义上看,变量是指可变的数量标志;从广义上来看,变量不仅指可变的数量标志,也包括可变品质标志,因此,可变标志就是变量.(1)标志与指标的区别:指标和标志说明的对象不同,指标说明总体的特征,标志则说明个体的特征;指标与标志的表现形式不同,指标是用数值来表现的,而标志则既能用文字来表现品质标志,也能用数字来表现数量标志。
样本分布和总体分布的关系
样本分布和总体分布是统计学中的两个重要概念。
样本指的是从总体中随机抽取的一部分数据,而总体则是所有数据的集合。
样本分布指的是样本中各项数据的分布情况,而总体分布则是总体中各项数据的分布情况。
两者之间的关系可以通过以下几个方面来描述:
1. 样本分布可以反映总体分布的特征。
当样本的抽样方法和样本容量适当时,样本中的数据分布趋势和总体中的数据分布趋势应该是相似的。
因此,通过样本分布可以初步了解总体分布的特征。
2. 样本分布和总体分布不一定完全相同。
由于样本容量的限制和抽样误差的存在,样本分布和总体分布可能存在一定的差异。
因此,只能通过样本分布来近似地推断总体分布的特征。
3. 样本分布可以用于检验总体分布的假设。
在统计学中,我们常常需要对总体分布进行假设检验。
此时,我们需要从总体中抽取一个样本,通过样本分布来判断总体分布是否符合我们的假设。
4. 样本分布可以用于估计总体分布的参数。
在统计学中,我们通常需要通过样本来估计总体的一些参数,如总体均值、方差等。
此时,我们可以根据样本的分布情况来估计总体参数的值。
综上所述,样本分布和总体分布是紧密相关的,它们之间的关系对于统计学中的假设检验、参数估计等问题具有重要的意义。
- 1 -。
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
第五、六、七章:抽样推断1.总体分布、样本分布、抽样分布总体分布:总体中各个数据的分布样本分布:样本中各个数据的分布抽样分布:样本统计量的概率分布总体的分布通过直方图观察,但一般不可能得到所有的数据,也就不能直接观察到总体分布。
只要知道总体的分布类型和反映总体分布特征的参数就能够满足需要。
样本分布也称为经验分布,样本来源于总体,会包含总体的信息和特征,特别当样本容量较大时,样本的分布会很接近总体分布,但样本是随机抽取的,一般与总体分布有一定差异。
抽样分布是说明样本分布特征的统计量的分布,对它的理解是建立在反复抽样的基础上,样本是随机抽取的,不同的样本会有不同的统计量值,一个总体可以有很多个不同的样本,这样一个统计量就会有很多不同的取值,这些不同值的分布就是抽样分布。
由于在实践中对于同一总体我们不会反复抽取很多样本,因此,抽样分布一般不能直接观察到,仅是一种理论分布。
抽样分布揭示了样本统计量与总体参数的内在联系,为统计推断提供了理论基础。
2.总体单位与抽样单位、样本容量与样本可能数目3.统计量、总体参数及统计量的标准化统计量是样本数据的函数,在实际抽样之前,由于是样本随机的,统计量也是随机的,但在抽取样本之后,样本已经确定,统计量也就是确定的,不包含任何未知变量。
总体参数是说明统计总体的数据特征值,一般是确定但未知的,是待估计的。
统计量的标准化是统计推断的必要过程,是将具体的统计量转化为已知分布的统计量,转化以后就可以确定一定区间的概率。
4.统计误差、抽样误差、抽样标准误差与抽样边际误差统计误差是统计调查得到的值与客观实际值之间的差异。
包括抽样误差和非抽样误差。
非抽样误差又称工作误差或调查误差,是指调查登记过程中由于登记、过录、计算等原因引起的误差。
在全面调查和非全面调查中都有可能存在。
抽样误差也称为随机误差,是指在坚持了随机抽样的情况下,由于样本的随机性造成样本统计量与总体参数的差异。
样本是随机的,样本的统计量也是随机的,而总体参数是唯一的,因而抽样误差也是随机的。
统计学中的样本分布与总体分布的关系统计学作为一门关于收集、分析和解释数据的学科,主要研究的是从一定的总体中选取样本,并通过对样本的统计分析得出总体的特征和规律。
在统计学中,样本分布与总体分布之间存在着密切的关系。
本文将探讨样本分布与总体分布之间的关系,从而更好地理解统计学中的重要概念。
一、什么是样本分布和总体分布在开始分析样本分布与总体分布的关系之前,我们需要明确这两个概念的含义。
1. 样本分布:样本分布是指从总体中选取的、具有一定规模的、代表性的样本数据的分布情况。
样本分布是对总体的一种估计,通过样本数据的统计量,如均值、方差等来描述样本的特征和变异程度。
2. 总体分布:总体分布是指包含了全部个体、观察值或测量值的分布情况。
总体分布是研究对象的全集,也是样本所在的基本框架。
总体分布是通过对全部数据的描述,如概率密度函数、频数分布等来表达总体的特征和形态。
二、样本分布与总体分布的关系在统计学中,样本分布与总体分布存在着紧密的关系,它们既有区别,又有联系。
具体表现在以下几个方面:1. 样本是总体的一部分:样本是从总体中抽取的部分数据,它们代表了总体的特征和规律。
在得到样本数据后,可以通过对样本的统计分析来推断总体的性质。
因此,样本分布与总体分布的性质和形态存在一定的关联。
2. 样本分布逼近总体分布:当样本容量增大时,样本分布的特征逐渐接近总体分布的特征。
这是由于大样本量的随机性逐渐减小,样本的均值、方差等统计量更能准确地反映总体的性质。
3. 样本分布与总体分布形态一致:在某些情况下,样本分布的形态与总体分布的形态一致。
例如,如果总体分布服从正态分布,那么当样本容量足够大时,样本分布也会趋近于正态分布。
这是由于中心极限定理的作用,即将多个独立同分布的随机变量之和的分布逼近于正态分布。
4. 样本分布可用于总体的推断:通过对样本的分析得到的统计量,如置信区间、假设检验等,可以进行对总体的推断。
样本的统计量通过与总体参数相比较,能够帮助我们判断总体的性质和规律。