用样本分布估计总体分布
- 格式:ppt
- 大小:604.50 KB
- 文档页数:16
用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。
在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。
为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。
一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。
一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。
例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。
二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。
频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。
这样可以更好地反映出组与组之间的差异。
三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。
在直方图上,x轴表示不同的组或区间,y轴表示频率。
我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。
通过绘制多个矩形,可以将频率分布更直观地展示出来。
在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。
2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。
3.直方图的矩形之间应该没有间隙,以保证数据的完整性。
四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。
我们可以基于样本数据构建直方图,并计算每个组的频率。
然后,我们可以将样本频率分布与总体的频率分布进行比较。
如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。
当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。
样本分布和总体分布的关系
样本分布和总体分布是统计学中的两个重要概念。
样本指的是从总体中随机抽取的一部分数据,而总体则是所有数据的集合。
样本分布指的是样本中各项数据的分布情况,而总体分布则是总体中各项数据的分布情况。
两者之间的关系可以通过以下几个方面来描述:
1. 样本分布可以反映总体分布的特征。
当样本的抽样方法和样本容量适当时,样本中的数据分布趋势和总体中的数据分布趋势应该是相似的。
因此,通过样本分布可以初步了解总体分布的特征。
2. 样本分布和总体分布不一定完全相同。
由于样本容量的限制和抽样误差的存在,样本分布和总体分布可能存在一定的差异。
因此,只能通过样本分布来近似地推断总体分布的特征。
3. 样本分布可以用于检验总体分布的假设。
在统计学中,我们常常需要对总体分布进行假设检验。
此时,我们需要从总体中抽取一个样本,通过样本分布来判断总体分布是否符合我们的假设。
4. 样本分布可以用于估计总体分布的参数。
在统计学中,我们通常需要通过样本来估计总体的一些参数,如总体均值、方差等。
此时,我们可以根据样本的分布情况来估计总体参数的值。
综上所述,样本分布和总体分布是紧密相关的,它们之间的关系对于统计学中的假设检验、参数估计等问题具有重要的意义。
- 1 -。
用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。
每组数除以全体数据的个数的商叫做该组的频率。
频率反映数据在每组中所占比例的大小。
(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。
为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。
(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。
如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。
用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。
(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。
为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。
(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。
设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。
y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。
a b内的百分比就是图中带斜线部分的面积。
对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
统计学中的样本分布与总体分布的关系统计学作为一门关于收集、分析和解释数据的学科,主要研究的是从一定的总体中选取样本,并通过对样本的统计分析得出总体的特征和规律。
在统计学中,样本分布与总体分布之间存在着密切的关系。
本文将探讨样本分布与总体分布之间的关系,从而更好地理解统计学中的重要概念。
一、什么是样本分布和总体分布在开始分析样本分布与总体分布的关系之前,我们需要明确这两个概念的含义。
1. 样本分布:样本分布是指从总体中选取的、具有一定规模的、代表性的样本数据的分布情况。
样本分布是对总体的一种估计,通过样本数据的统计量,如均值、方差等来描述样本的特征和变异程度。
2. 总体分布:总体分布是指包含了全部个体、观察值或测量值的分布情况。
总体分布是研究对象的全集,也是样本所在的基本框架。
总体分布是通过对全部数据的描述,如概率密度函数、频数分布等来表达总体的特征和形态。
二、样本分布与总体分布的关系在统计学中,样本分布与总体分布存在着紧密的关系,它们既有区别,又有联系。
具体表现在以下几个方面:1. 样本是总体的一部分:样本是从总体中抽取的部分数据,它们代表了总体的特征和规律。
在得到样本数据后,可以通过对样本的统计分析来推断总体的性质。
因此,样本分布与总体分布的性质和形态存在一定的关联。
2. 样本分布逼近总体分布:当样本容量增大时,样本分布的特征逐渐接近总体分布的特征。
这是由于大样本量的随机性逐渐减小,样本的均值、方差等统计量更能准确地反映总体的性质。
3. 样本分布与总体分布形态一致:在某些情况下,样本分布的形态与总体分布的形态一致。
例如,如果总体分布服从正态分布,那么当样本容量足够大时,样本分布也会趋近于正态分布。
这是由于中心极限定理的作用,即将多个独立同分布的随机变量之和的分布逼近于正态分布。
4. 样本分布可用于总体的推断:通过对样本的分析得到的统计量,如置信区间、假设检验等,可以进行对总体的推断。
样本的统计量通过与总体参数相比较,能够帮助我们判断总体的性质和规律。
《用样本的频率分布估计总体分布》教学设计教学目标:1 知识与能力目标:(1).了解样本的频率分布与总体分布的关系,能用样本的频率分布去估计相应的总体分布。
(2).在表示样本数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点。
(3).通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力。
2 情感目标:(1)渗透数形结合思想。
(2)结合教学内容培养学生学习数学的兴趣及“用数学”的意识,激励学生勇于自我创新。
(3)培养学生普遍联系、数学来源于实践又指导实践的辩证唯物主义观点及勇于探索的创新精神。
教学重点:通过实例体会分布的意义和作用,能做出样本的频率分布表、画频率分布直方图和频率折线图。
教学方法:以教师为主导,学生为主体,以能力发展为目标,强化学生的注意力及新旧知识的联系,通过教师讲授、学生尝试练习,调动学生的积极性,发挥学生的主体作用。
教学环节教学内容师生互动设计意图复习统计的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体。
前面我们学习了哪些抽样方法?问题:抽取样本后怎样用样本来估计总体呢?即用什么方法来处理得到的样本数据,来估计、推测总体的特征、特性?理论证明,可以用样本的频率分布估计总体的分布,用样本数字特征估计总体的数字特征。
本节我们学习用样本的频率分布估计总体的分布,教师提出问题,铺垫复习,学生思考、积极回答问题教师根据学生的回答、进一步提出问题,导入新课。
学生思考、讨论教学重难点新课前的复习即可加深对学过的知识的理解,又可为学习新知识埋下伏笔。
先设疑、激发学生的求知欲望、提高学生学习教学的兴趣让学生了解本节学生内容和学习的重难点,为学好本节做好知识和心理上的准备。
导入(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166162 158 159 156 166 160 164 160 157 156 157 161 158 158153 158 164 158 163 158 153157 162 162 159 154 165 166157 151 146 151 158 160 165158 163 163 162 161 154 165162 162 159 157 159 149 164 168 159 153我们希望了解身高在哪个小范围内的学生多,在那个小范围内的学生少?(2)为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:厘米)甲:12 13 14 15 10 16 13 11 15 11乙:11 16 17 14 13 19 6 8 1016问:那种小麦的10株苗高比较整齐?频率分布直方图如果样本容量较大,很难从一个个数字中直接看出样本所包含的信息。
必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。
主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。
2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。
本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。
从教材编写的角度来看,也正是要体现这一特点。
教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。
3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。
4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。
在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。
(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。
背景的熟悉使学生易于课堂参与。
(2)教材中问题的设计利于学生统计思想的建立等。
统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。
统计教学的核心目标正是让学生体会统计思维的特点和作用。
因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。
用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。
2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。
3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。
新课导入前面研究学习了三种抽样收集数据,数据收集后,必须从中寻找包含的信息,以使我们能追求样本的估计总体,但是由于数据多而杂,所以需要通过一定的方法去分析.可以通过表、图、计算方法来分析.1. 通过实例体会分布的意义和作用;2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.知识与技能教学目标过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.重点会列频率分布表,画频率分布直方图、频率折线图和茎叶图.能通过样本的频率分布估计总体的分布. 难点教学重难点我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?实际问题为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.假设我们通过抽样,得到100为居民月用水量,如下:100位居民的月均用水量(单位:t)3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.64.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2观察?上面的数字能告诉我们什么呢很容易发现的是一个居民月均用水量的最小值是0.2t,最大值是4.3t.其他值在0.2—4.3t之间.除此之外,很难从随意记录下来的数据中直接看出规律.为此,我们需要对统计数据进行整理和分析.知识要点频率分布直方图频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.方法画频率分布直方图的一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.(1)求极差 因为用水最小值为0.2t ,最大值为4.3t 所以:4.3-0.2=4.1 说明样本数据的变化范围是4.1t.将上述抽样的100户居民月用水量,画出频率分布直方图.解:(2)决定组距与组数数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5—12组.为了方便起见,组距的选择应力求“取整”.在本问题中,如果取组距为0.5(t),那么组数=极差/组距=4.1/0.5=8.2因此可将数据分成9组,这个组数是较合适的,于是去组距为0.5.组数为9.(3)将数据分组以组距为0.5将数据分组时,可以分成以下9组:[0,0.5),[0.5,1),…,[4,4.5).(4)列频率分布表按照组距为0.5将数据分组,分成以下9组:[0,0.5),[0.5,1),…,[4,4.5). 图如下:100位居民月均用水量的频率分布表分组频数频率[0,0.5)40.04[0.5,1)80.08[1,1.5)150.15[1.5,2)220.22 [2,2.5)250.25 [2.5,3)140.14 [3,3.5)60.06 [3.5,4)40.04 [4,4.5)20.02合计1001频数等于样本数,频率恒为1(5)画频率分布直方图 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/to 0.100.200.300.400.50频率/组距特征频率分布直方图的特征:从频率分布直方图可以清楚的看出数据分布的总体趋势.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.知识要点频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.总体密度曲线的定义在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.茎叶图数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.特征茎叶图的特征:1. 用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.2. 茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.课堂小结1.频率分布直方图的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.2.频率分布折线图的概念连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.高考链接1(2009四川)设矩形的长为a ,宽为b ,其比满足 51b :a 0.6182-=≈这种矩形给人以美感,称为黄金矩形,黄金矩形常应用用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样品来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()AA.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值跟接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:本题考查平均数的求法,用样本估计总体,经计算甲、乙批次的总体平均数0.6170.613甲乙,x x ==知甲批次的总体平均数与标准值0.618更接近.2(2009湖北)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[6,10]内的频数为_______,数据落在[2,10)内的概率约为_____. 64 0.4解析:本题考查频率分布直方图,样本数据落在[6,10)内的频数为0.08×(10-6)×200=64.样本数据落在[2,10)内的概率约为(0.02+0.08)×4=0.4.区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数11651.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位c m)(1)列出样本频率分布表﹔ (2)一画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.随堂练习分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计1201解:(1)样本频率分布表如下:前面的过程省略!122 126 130 134 138 142 146 150 158 154 身高(cm )o 0.010.020.030.040.050.060.07频率/组距(2)其频率分布直方图如下:0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为:2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.90 100 110 120 130 140 150 次数o 0.0040.0080.0120.0160.0200.0240.028频率/组距0.0320.036解:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1. (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.0824171593=+++++121500.08===第二小组频数样本容量第二小组频率又因为频率=频数/ 样本容量所以 (2)由图可估计该学校高一学生的达标率约为 171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.。