第四章一次函数复习(1)概论
- 格式:ppt
- 大小:414.50 KB
- 文档页数:44
北师大版八年级上册数学第四章复习要点:一次函数知识点对冤家们的学习十分重要,大家一定要仔细掌握,查字典数学网为大家整理了北师大版八年级上册数学第四章温习要点:一次函数,让我们一同窗习,一同提高吧!一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b那么此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k 为恣意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:经过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的恣意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必经过一、三象限,y随x的增大而增大;当k0时,直线必经过二、四象限,y随x的增大而减小。
当b0时,直线必经过一、二象限;当b=0时,直线经过原点当b0时,直线必经过三、四象限。
特别地,当b=O时,直线经过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只经过一、三象限;当k0时,直线只经过二、四象限。
四、确定一次函数的表达式:点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)由于在一次函数上的恣意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,失掉k,b的值。
第四章一次函数1、函数的观点一般地,设在一个变化过程中有两个变量x 和 y,而且关于 x 每一个确立的值,y 都有独一的值与它对应,那么就说x 是自变量, y 是 x 的函数。
对函数观点的理解:(1)有两个变量(2)一个变量的数值跟着另一个变量的变化而变化(3)自变量每确立一个值,函数有一个而且只有一个值与之对应(或多个x 的值能够对应一个 y 值但不可以一个 x 值对应多个 y 值,如 y=x2和 x2 =y)2、自变量的取值范围自变量的取值一定使含自变量的代数式都存心义。
(1)关系式为整式时,自变量的取值为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,自变量的取值还要和实质状况相切合,使之存心义。
如: S r 2中,r表示圆的半径时,r>03、一次函数和正比率函数一次函数 y=kx+b特点:k0x 的次数是 1常数项 b 是随意实数正比率函数: y=kx特点:k0x 的次数是 1常数项 b=0正比率函数是一种特别的一次函数。
4、一次函数图像性质一次函数 y=kx+ b 的图象的画法 .依据几何知识:经过两点能画出一条直线,而且只好画出一条直线,即两点确立一条直线,因此画一次函数的图象时,只需先描出两点,再连成直线即可 .一般情况下:是先选取它与两坐标轴的交点:( 0 , b ),.即横坐标或纵坐标为 0的点 .k 表示直线y=kx+b(k 0) 向上的方向与x 轴正方向夹角的大小,即直线倾斜的程度;b 表示直线 y=kx+b(k 0)与 y 轴交点的纵坐标一次函数 Y=kx+b k 0 的图象,当 b>0 时,图象与 y 轴的交点在 x 轴的上方;当b<0 时,图象与 y 轴的交点在 x 轴的下方;2两直线 y= k 1 x+ b 1 (k 0)的图象与 y= k 2 x+ b 2 (k 0)的地点关系:( 1) 当 k 1 = k 2 时,且 b 1 b 2 时,两直线平行( 2) 当 k 1 = k 2 时,且 b 1 =b 2 时,两直线重合( 3) 当 k 1 k 2 时,两直线订交( 4) 当 k 1 k 2 时,且 b 1 =b 2 时,两直线交于 y 轴上一点( 0,b 1 )或( 0,b 2 )【稳固训练】 一、选择题1 、 下 列 各 图 给 出 了 变 量 x 与 y 之 间 的 函 数 是 :( )yyyyo xoxoxo xABCD2、已知油箱中有油 25 升,每小时耗油 5 升,则剩油量 P(升)与耗油时间 t(小时 ) 之间的函数关系式为 ( ) A . P=25+5tB . P=25-5tC .P=25D . P=5t - 255t3、函数 y =3x + 1 的图象必定经过点 ().A .(3,5)B .(-2,3)C .(2,7)D . (4,10)4、以下函数关系式 : ① yx ;② y2x11;③ yx 2x 1; ④ y1 .此中一次函数的个数是 ( )xA. 1 个B.2 个C.3 个D.4个 5、假如 y=x -2a +1 是正比率函数,则 a 的值是( )(A)1(B)0(C)-1(D)- 2226. 一次函数 y=kx+b 图象如图,正确的是()(A )k>0,b >0 ( B ) k>0,b <0 ( C ) k<0,b>0(D )k<0, b <07.已知一次函数的图象与直线 y=-x+1 平行,且过点( 8,2),那么此一次函数 的分析式为( )A .y=-x-2B . y=-x-6C . y=-x+10D .y=-x-1 8、若直线 yx n不经过第四象限,则( )mA.m >0,n <0B.m <0,n <0C.m <0,n > 0D.m >0,n ≤09、函数 y=kx+b(k < 0, b > 0)的图象可能是以下图形中的( )y y yyo xo xo xox[A.B.C.D.10、若函数 y=2x+3 与 y=3x -2b 的图象交 x 轴于同一点,则 b 的值为 ( )A .- 3B .-3C . 9D .-92 411 一次函数 y=kx+6,y 随 x 的增大而减小,则这个一次函数的图象不经过 ()A. 第一象限B. 第二象限C.第三象限D. 第四象限12 如图 , 直线 y kx b 经过 A(0,2) 和 B(3,0) 两点 , 那么这个一次函数关系式是 ( ) A. y 2x 3 B. y2x 2 C. y 3x 2 D. y x 1313.李老师骑自行车上班,最先以某一速度匀速前进, ?半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,李老师加速了速度,仍保持匀速前进,假如准时到校. 在讲堂上,李老师请学生画出他前进的行程 y?(千 米)与前进时间 t (小时)的函数图象的表示图,同学们画出的图象如图所 示,你以为正确的选项是( )14、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、(-1,-1)B、(-1, 1)C、(1, -1)D、 (1, 1)115、已知点( -4,y 1),(2,y 2)都在直线 y=- 2 x+2 上,则 y 1 y 2 大小关系是 ()(A )y 1 >y 2 (B ) y 1 =y 2(C ) y 1 <y 216.如图一次函数 y=kx+b 的图象经过点 A 和点 B .(1)写出点 A 和点 B 的坐标并求出 k 、 b 的值; (2)求出当 x= 3时的函数值.217、已知,函数 y 1 3k x 2k 1 ,试回答:(1) k 为什么值时,图象交 x 轴于点(3,0)?4(2)k 为什么值时, y 随 x 增大而增大?18、如图,是某汽车行驶的行程 S(km)与时间 t(min)的函数关系图.察看图中所供给的信息,解答以下问题:( 1)汽车在前 9 分钟内的均匀速度是(2)汽车在半途停了多长时间?S/km(3)当 16≤t≤30 时,求 S 与 t 的函数关系式.40129 1630t/min19、某自来水企业为了鼓舞市民节俭用水,采纳分段收费标准,若某用户居民每个月应交水费y(元)是用户量x(方)的函数,其图象如下图,依据图象回答以下问题:( 1)分别求出 x≤5 和 x>5 时, y 与 x 的函数关系式;( 2)自来水企业的收费标准是什么?y(元)( 3)若某户居民交水费9 元,该月用水多少方6.6320.如图信息, l 1为走私船, l 2为我公安快艇,航行时行程与时间的函数图象,问:( 1)在刚出发时我公安快艇距走私船多少㎞?(2)计算走私船与公安快艇的速度分别是多少?( 3)写出 l 1 , l 2的分析式 .( 4)问 6 分钟时两艇相距几千米。
第四章一次函数考点类型大总结【知识点及考点类型梳理】一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数. 3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx +ny =p (m ,n ,p 是常数,且m ≠0,n ≠0)都能写成y =ax +b (a ,b 为常数,且a ≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.考点类型一、一次函数与正比例函数的定义1.在下列函数中:①8y x =-;②312y x =+;③1y =;④285y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】C 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①8y x =-属于一次函数;②312y x =+属于一次函数;③1y =不属于一次函数;④285y x =-+属于二次函数;⑤0.51y x =--属于一次函数;∴一次函数有3个,故选:C .2.下列问题中,两个变量之间是正比例函数关系的是()A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A 【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x ,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A 【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键3.在①8y x =-;②8y x=-;③1y =;④286y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】B 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①y =-8x 属于一次函数;②y =8x-属于反比例函数;③y不属于一次函数;④y =-8x 2+6属于二次函数;⑤y =-0.5x -1属于一次函数,∴一次函数有2个,故选:B .举一反三4.下列函数中是一次函数的是()A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)【答案】A 【分析】利用一次函数定义进行解答即可.【详解】解:A 、y =2x是一次函数,故此选项符合题意;B 、y =2x是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .5.下列函数是正比例函数的是()A .2x y =B .2y x=C .2y x =D .2(1)y x =+【答案】A 【分析】根据用x 表示成y 的函数后,若符合()0y kx k =≠的形式,是正比例函数解答即可.【详解】A 、2xy =是正比例函数;B 、2y x=是反比例函数;C 、2y x =是二次函数;D 、()21y x =+是一次函数.故选:A .考点类型二、一次函数的图像6.函数2y x =-的图象经过的象限是()A .第一,二,三象限B .第一,二,四象限C .第一,三,四象限D .第二,三,四象限【答案】C【分析】根据一次函数k=1>0,b=-2<0,即可得到答案.【详解】y x=-中,k=1>0,b=-2<0,解:∵函数2y x=-的图象经过的象限是:第一,三,四象限,∴2故选C.【点睛】本题主要考查一次函数图像所经过的象限,掌握一次函数图像与一次函数中的系数k,b的关系,是解题的关键.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而减小,则()A.k<2B.k>2C.k<0D.k>0【答案】A【分析】根据一次函数的性质,可得答案.【详解】解:由题意,得k-2<0,解得k<2,故选:A.【点睛】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大,当k<0时,函数值y随x 的增大而减小.8.若一次函数的y=kx+b(k<0)图象上有两点A(﹣2,y1)、B(1,y2),则下列y大小关系正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】B【分析】首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式y =kx +b (k <0)可得此一次函数随着x 的增大而减小因为A (﹣2,y 1)、B (1,y 2),根据-2<1,可得12y y >故选B .9.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小,k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b=-+∴k <0∴y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<-∴12m m >故答案为:>.10.在一次函数23y x =-+中,当05x ≤≤时,y 的最小值为________.【答案】-7【分析】根据一次函数的性质得y 随x 的增大而减小,则当x =5时,y 有最小值,然后计算x =-5时的函数值即可.【详解】解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =5时,y 有最小值,把x =5代入y =-2x +3得y =-10+3=-7.故答案为:-7.11.关于一次函数y =﹣2x +4,下列结论正确的是()A .图象过点(0,-2)B .图象经过一、三、四象限C.y随x的增大而增大D.图象与x轴交于点(2,0)【答案】D【分析】根据一次函数的性质对各项进行逐一判断即可.【详解】A、当x=0时,y=4,过点(0,4),故A选项错误;B、因为k=-2<0,图象经过第一、二、四象限,故B错误;C、因为k=-2<0,y随x的增大而减小,故C错误;D、当y=0时,x=2,即图象与x轴交于点(2,0),故D正确.故选:D12.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()A.B.C.D.【答案】B解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y =mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n 的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项错误;故选:B .【点睛】本题综合考查了正比例函数、一次函数图象与系数的关系.解题的关键是掌握一次函数(0)y kx b k =+≠的图象有四种情况:①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.13.一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】A 【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 1+1<x 1+2即可得出结论.【详解】解:∵一次函数52y x =-中,k =5>0,∴y 随着x 的增大而增大.∵一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,且x 1<x 1+1<x 1+2,∴123y y y <<,故选:A .14.若直线y =kx +b 不经过第一象限,则()A .k >0,b <0B .k <0,b ≤0C .k <0,b ≥0D .k <0,b >0【答案】B 【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】解:由直线y kx b =+不经过第一象限,可分两种情况:当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k <0,∵直线还经过第三象限,即直线与y 轴的交点在y 轴的负半轴,∴b <0;当直线经过原点和第二、四象限时,k <0,b =0,综上,k <0,b ≤0,故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k 、b 的关系是解答的关键.15.将直线23y x =-向上平移2个单位长度,所得的直线解析式为________.【答案】y =2x -1【分析】根据k 值不变,b 值加2可得出答案.【详解】解:平移后的解析式为:y =2x -3+2=2x -1.故答案为:y =2x -1.【点睛】本题考查的是关于一次函数的图象与它平移后图象的变换的题目,在解题过程中只要抓住平移后直线方程的斜率不变这一性质,就能很容易解答了.16.在平面直角坐标系中,要得到函数y =2x ﹣1的图象,只需要将函数y =2x 的图象()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位【答案】B【分析】根据“上加下减”的原则写出新直线解析式.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象向下平移1个单位长度所得函数的解析式为21y x =-.故选:B .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.17.点P (a ,b )在函数3y x =的图象上,则代数式622021a b -+的值等于_________.【答案】2021.【分析】把点P 的坐标代入一次函数解析式,得出3b a =,将3b a =代入622021a b -+中计算即可.【详解】解:∵点P (a ,b )在函数3y x =的图象上,∴3b a =,∴62202162320212021a b a a -+=-+= 故答案为:2021.【点睛】本题主要考查了一次函数的图像性质,结合代数式求值是解题的关键.18.已知函数y 1=(m +1)x ﹣m 2+1(m 是常数).(1)m 为何值时,y 1随x 的增大而减小;(2)m 满足什么条件时,该函数是正比例函数?(3)若该函数的图象与另一个函数y 2=x +n (n 是常数)的图象相交于点(m ,3),求这两个函数的图象与y 轴围成的三角形的面积.【答案】(1)m <﹣1;(2)m =1;(3)4【分析】(1)根据题意10+<m ,解得即可;(2)根据正比例函数的定义得到10m +≠,210m -+=,解得1m =;(3)由函数()2111y m x m =+-+经过点(),3m 求得2m =,得到交点为()2,3,根据交点坐标求得函数1y 的解析式,即可求得与y 轴的交点坐标,把交点坐标代入2y x n =+,求得解析式,即可求得与y 轴的交点坐标,然后根据三角形面积公式即可求得两个函数的图象与y 轴围成的三角形的面积.【详解】解:(1)由题意:10+<m ,1m ∴<-,即1m <-时,1y 随x 的增大而减小;(2)若该函数是正比例数,则10m +≠,210m -+=,1m ∴=,即1m =时,该函数是正比例数;(3) 两个的图象相交于点(),3m ,()2113m m m ∴+-+=,2m ∴=,∴交点坐标为()2,3,∴该点到y 轴的距离为2,将2m =代入()2111y m x m =+-+,得:133y x =-,将交点坐标()2,3代入2y x n =+,得:1n =,21y x ∴=+,∴两个函数图象与y 轴的交点坐标分别为()0,3-和()0,1,∴所围成的三角形的面积为:()13224--⨯÷=⎡⎤⎣⎦.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正比例函数的定义,一次函数图象与系数的关系,三角形的面积等,熟练掌握一次函数的性质以及求得交点坐标是解题的关键.考点类型三、求一次函数表达式19.已知3y +与x 成正比例,且2x =时,1y =.求y 关于x 的函数表达式;【答案】y 关于x 的函数表达式为23y x =-.【分析】设3y kx +=(0k ≠),再把2x =,1y =代入求出y 关于x 的关系式即可.【详解】设3y kx +=(k 是常数且0k ≠),把2x =,1y =代入,得132k +=,解得2k =,所以32y x +=,所以y 关于x 的函数表达式为23y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.20.已知y ﹣2与x +1成正比例,且x =2时,y =8(1)写出y 与x 之间的函数关系式;(2)当x =﹣4时,求y 的值.【答案】(1)y =2x +4,(2)-4【分析】(1)设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入求出k 即可;(2)把x =﹣4代入y =2x +4计算即可求出答案.【详解】解:(1)∵y ﹣2与x +1成正比例,∴设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入得:8﹣2=k (2+1),解得:k =2,即y ﹣2=2(x +1),即y =2x +4,∴y 与x 之间的函数关系式是y =2x +4;(2)当x =﹣4时,y =2×(﹣4)+4=﹣4.21.某物流公司引进A 、B 两种机器人用来搬运某种货物.这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)P 点的含义是;(2)求y B 关于x 的函数解析式;(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克;(2)y =90x ﹣90(1≤x ≤6);(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克【分析】(1)观察函数图象,根据点P 为线段OG 、EF 的交点结合题意即可找出点P 的含义;(2)根据点E 、P 的坐标利用待定系数法即可求出y B 关于x 的函数解析式;(3)根据工作总量=工作效率×工作时间,分别求出A 、B 两种机器人连续运5小时的云货量,二者做差即可得出结论.【详解】解:(1)P 点的含义是:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.故答案为:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.(2)设y B 关于x 的函数解析式为y B =kx +b ,将(1,0)、(3,180)代入y B =kx +b ,03180k b k b +=⎧⎨+=⎩,解得:9090k b =⎧⎨=-⎩,∴y B 关于x 的函数解析式为y =90x ﹣90(1≤x ≤6).(3)连续工作5小时,A 种机器人的搬运量为(180÷3)×5=300(千克),连续工作5小时,B 种机器人的搬运量为[180÷(3﹣1)]×5=450(千克),B 种机器人比A 种机器人多搬运了450﹣300=150(千克).答:如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克.22.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于A ,B 两点,且经过点()2,6D -,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y kx b =+的解析式(2)求BOC 的面积【答案】(1)4y x =-+;(2)2【分析】(1)求出点C 的坐标,将,C D 坐标代入到y kx b =+中,求出即可;(2)求出点B 的坐标,根据三角形的面积公式即可求出;【详解】解:(1)当1x =时,3y =设直线y kx b =+过()()1,32,6-,∴623k b k b=-+⎧⎨=+⎩解得:14k b =-⎧⎨=⎩∴函数解析式为4y x =-+(2)当0x =时,4y =∴14122BOC S =⨯⨯= 考点类型四、一次函数与一元一次方程23.画出函数33y x =-+的图象,根据图象回答下列问题:求方程330x -+=的解【答案】图像见详解;1x =.【分析】利用两点法画出函数的图象,然后令0y =,即直线与x 轴的交点的横坐标就是方程330x -+=的解.【详解】解:∵函数33y x =-+,令0y =,则1x =;令0x =,则3y =,33y x =-+的图像如图所示:由图可知,方程330x -+=的解是1x =;【点睛】本题考查了画一次函数的图像,由图像求一元一次方程的解,解题的关键是掌握一次函数的性质进行解题.考点类型五、一次函数的综合24.如图,在平面直角坐标系中,一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,与正比例函数12y x =的图象交于点A .(1)求A 、B 、C 三点的坐标;(2)求OAC 的面积;(3)若动点M 在射线AC 上运动,当OMC 的面积是OAC 的面积的12时,求出此时点M 的坐标.【答案】(1)()4,2A ,()6,0B ,()0,6C ;(2)12;(3)()2,4或()2,8-.【分析】(1)在一次函数6y x =-+中,分别令0y =,0x =,即可求出B 、C 的坐标,再联立一次函数和正比例函数即可求出交点A 的坐标;(2)利用(1)中,找到OC ,A x 的长即可求出OAC 的面积;(3)根据OMC 的面积是OAC 的面积的12时,求出M 的横坐标,再分情况讨论即可找到M 的坐标.【详解】解:(1)∵一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,∴令0x =,则6y =,故()0,6C ,令0y =,则6x =,故()6,0B ,而A 为一次函数6y x =-+和正比例函数12y x =图象的交点,联立方程得:612y x y x =-+⎧⎪⎨=⎪⎩,解得:42x y =⎧⎨=⎩,∴A 的坐标为()4,2.故答案为:()4,2A ,()6,0B ,()0,6C .(2)由(1)可知:6OC =,4A x =,∴12OAC A S OC x =⨯⨯△164122=⨯⨯=.故答案为:12.(3)由题意得:12OMC OAC S S =△△11262=⨯=,而116622OMC M M S OC x x =⨯⨯=⨯⨯=△∴2M x =|,∴2M x =±,分情况讨论:①当2M x =时,6264y x =-+=-+=,故此时M 点的坐标为()2,4,②若2M x =-时,6268y x =-+=+=,故此时M 点的坐标为()2,8-,综上,M 点的坐标为()2,4或()2,8-;故答案为:()2,4或()2,8-.25.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为()A .0.5B .1C .1.5D .2【答案】B【分析】利用待定系数法求直线AB 的解析式,然后根据一次函数图象上点的坐标特点求得E 点坐标,从而确定点E 为AB 的中点,从而结合三角形面积比计算求解.【详解】解:设直线AB 的解析式为y kx b =+,将(5,0)A ,(0,4)B 代入,504k b b +=⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:4y x 45=-+,又 点(2.5,)E m 在AB 上,4 2.5425m ∴=-⨯+=,E ∴点坐标为(2.5,2),又 50 2.52+=,0422+=,∴点E 是线段AB 的中点,FEA FEB S S ∆∆∴=,又 四边形OFEB 与FEA ∆的面积之比为3:2,FBA S ∆∴与AOB S ∆的面积之比为4:5,∴45 AF OA=4 AF∴=,1OF OA AF∴=-=,故选:B.【点睛】本题考查一次函数的应用,掌握待定系数法求函数解析式的步骤,理解一次函数的性质,利用数形结合思想解题是关键.26.如图,已知一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点.点C(4,n)在该函数的图象上,连接OC.(1)直接写出点A,B的坐标;(2)求△OAC的面积.【答案】(1)A(﹣6,0),B(0,3);(2)15【分析】(1)根据一次函数y=12x+3,分别令x=0,y=0即可求出A,B的坐标;(2)根据点C(4,n)在该函数的图象上,将之代入一次函数解析式求出C点的坐标,根据三角形的面积公式即可求得三角形面积.【详解】解:(1)∵一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点,令x=0,则y=3,令y=0,则x=-6,∴A(﹣6,0),B(0,3);(2)把点C (4,n )代入y =12x +3得14352n =⨯+=,∴点C 的坐标为(4,5),∴11651522AOC C S OA y ∆=⨯⨯=⨯=.【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.27.如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OPA 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y S OA P =,列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+∴34k =∴一次函数解析式为364y x =+(2)如图:∵OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形∵()6,0A -∴6OA =∴1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x +=解得132x =-把132x =-代入一次函数364y x =+中,得98y =∴当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为27828.如图,直线AB 的解析式为2y x =+,直线AC 的解析式为4y x =-+,两条直线交于点A ,且分别与x 轴交于点B 、点C .(1)求ABC 的面积;(2)点D 为线段AC 上一点,连接BD ,若BD =D 的坐标.【答案】(1)9ABC S = ;(2)()3,1D .【分析】(1)过点A 作AE x ⊥轴于点E ,联立两直线解析式求交点坐标()1,3A ,可得3AE =,再求直线与x 轴两交点坐标()2,0B -,()4,0C ,可求()426BC =--=,利用三角形面积公式求即可;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,(),4D m m -+,根据勾股定理222BD DF BF =+,即()()22242m m =-+++解方程即可.【详解】解:(1)过点A 作AE x ⊥轴于点E ,由题意联立方程组24y x y x =+⎧⎨=-+⎩,解得:13x y =⎧⎨=⎩,∴()1,3A ,∴3AE =.当0y =时,20x +=,∴2x =-,∴()2,0B -,当0y =时,40x -+=,∴4x =,∴()4,0C ,∴()426BC =--=,∴1163922ABC S BC AE =⋅=⨯⨯=△;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,∵点D 在直线AC 上,∴4y m =-+,∴(),4D m m -+,∴4DF m =-+,∴()22BF m m =--=+,在Rt DBF △中,90DFB ∠=︒,根据勾股定理222BD DF BF =+,∴()()22242m m =-+++,整理得2230m m --=,解得:13m =,21m =-(不合题意,舍去),∴()3,1D .29.如图,在平面直角坐标系中,▱ABCD 各顶点的坐标分别为A (1,﹣1),B (2,﹣3),C (4,﹣3),D(3,﹣1),若直线y =﹣3x +b 与▱ABCD 有交点,则b 的取值范围是()A .3≤b ≤8B .2≤b ≤8C .2≤b ≤9D .﹣3≤b ≤9【答案】C【分析】根据A 、B 的坐标求出直线AB 的解析式,然后与直线3y x b =-+进行比较k 的值,最后进行分析计算即可得到答案.【详解】解:设直线AB 解析式为y mx n=+∵A 点坐标为(1,-1),B 点的坐标为(2,-3)∴132m n m n-=+⎧⎨-=+⎩∴解得21m n =-⎧⎨=⎩∴直线AB 解析式为21y x =-+∵23->-∴直线3y x b =-+的倾斜程度比直线21y x =-+的倾斜程度更厉害即为下图所示的情况时,直线3y x b =-+与平行四边ABCD 有交点当直线3y x b =-+经过A (1,-1)时∴1131b -=-⨯+,解得12b =当直线3y x b =-+经过C (4,-3)时∴2334b -=-⨯+,解得29b =综上所述29b ≤≤故选C.【点睛】本题主要考查了一次函数图像与图形的交点问题,解题的关键在于能够找到临界直线进行求解计算.30.如图,在平面直角坐标系xOy 中,直线AB 与x 轴,y 轴分别交于点30A (,),点04B (,),点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)直接写出结果:线段AB 的长__________,点C 的坐标__________;(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB S S = ,求点P 的坐标.【答案】(1)5AB =,()80,C ;(2)直线CD 的函数表达式为364y x =-;(3)P 点坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫- ⎪⎝⎭.【分析】(1)运用勾股定理即可求出线段AB 的长;根据折叠得AC AB =,可得点C 的坐标;(2)设点D 的坐标为:()0,m ,而CD BD =,根据222OC OD CD +=,即可求出点D 的坐标,运用待定系数法设直线CD 的表达式为y kx b =+,将点C 、点D 代入即可求出答案;(3))设ACP △边AC 上的高为h ,根据2PAC OAB S S = ,求出h ,即可知道点P 的纵坐标,最后代入直线CD 的函数表示式中,即可求出答案.【详解】解:(1)()3,0A ,()0,4B ,3OA ∴=,4OB =,90AOB ∠=︒Q ,5AB ∴==;由折叠得:5AC AB ==,358OC OA AC ∴=+=+=,∴点C 的坐标为()8,0;故答案为:5AB =,80C (,);(2)设点()0,D m ,则OD m =-,由折叠可知,4CD BD m ==-,在Rt OCD △中,222=+CD OD OC ,()222(4)8m m ∴-=-+,解得:6m =-,0,6D ∴-(),设直线CD 的函数表达式为y kx b =+,将()8,0C 、0,6D -()代入,得806k b b +=⎧⎨=-⎩,解得,34k =,6b =-,∴直线CD 的函数表达式为364y x =-.(3)设ACP △边AC 上的高为h ,则1134622OAB S OA OB =⋅⋅=⨯⨯= ,1522PAC S AC h h =⋅⋅= ,且2PAC OAB S S = ,245h ∴=,因此点P的纵坐标为245或245-,当245y=时,即324645x-=,解得725x=;当245y=-时,即324645x-=-,解得85x=,因此,点P坐标为7224,55⎛⎫⎪⎝⎭或824,55⎛⎫-⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数解析式,折叠的性质,勾股定理,三角形面积公式等.课后巩固1.一次函数y=﹣3x﹣2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限,所以函数图象不过第一象限.【详解】解:∵k=﹣3<0,b=﹣2<0,∴函数的图象不经过第一象限,故选:A.2.一次函数y=﹣2x+b的图象经过点A(2,y1),B(﹣1,y2),则y1与y2的大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【答案】A【分析】在y=kx+b中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大;利用一次函数的增减性进行判断即可.【详解】解:在一次函数y=-2x+b中,。
第四章 一次函数知识点总结一、函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一值与x 对应,则x 称为自变量,把y 称为因变量,y 是x 的函数。
二、函数的表示法:列表法;关系式法;图象法。
三、描点法画函数图形的一般步骤(通常选五点法):(一):列表;(二):描点;(三):连线。
四、一次函数与正比例函数定义:一般地,形如y=kx +b(k,b 是常数,k ≠0),叫做y 是x 的一次函数,当b=0时,即形如y=kx(k 是常数,k ≠0),叫做y 是x 的正比例函数。
正比例函数是特殊的一次函数.注意:⑴解析式中自变量x 的次数是1次;⑵比例系数k ≠0(k 又称为斜率)。
五、正比例函数与一次函数图象特点:(1)正比例函数y=kx 的图象是经过(0,0)的一条直线。
(2)一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)的一条直线,又称为直线y=kx+b 。
六、一次函数图象与正比例函数图象性质: (一)作正比例函数描点:(0,0)和(1,k );作一次函数函数描点:(0,b )和(-k b ,0) (二)k 决定函数增减性、直线的倾斜方向和倾斜程度:(1)增减性:k>0,y 随x 的增大而增大(变化相同);k<0,y 随x 增大而减小(变化相反).(2)倾斜方向:k>0,图象向右倾斜;k<0,图象向左倾斜。
(3)倾斜程度:|k|越大,图象越靠近于y 轴,直线越陡,变化速度越快。
k 相等则倾斜程度相同,即两条直线平行。
(三)b 的正、负决定直线与y 轴交点的位置:(1)当b >0时,直线与y 轴交于正半轴上;(2)当b <0时,直线与y 轴交于负半轴上;(3)当b=0时,直线经过原点,是正比例函数。
七、正比例函数与一次函数图象之间的关系:一次函数y=kx +b 的图象可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移):上加下减,左加右减。
第四章 一次函数一、函数1、函数的定义(重点)一般的,如果在一个变化过程中有两个变量x 和y ,并且对于变量x 的 ,变量y 都有 ,那么我们就称y 是x 的函数,其中x 是自变量,y 是因变量。
理解函数的关键四点:(1)有两个变量;(2)一个变量变化,另一个随之变化;(3)对于自变量x 每一个确定的值,函数y 有且仅有一个值与之对应;(4)函数不是数,是过程中x 、y 的变量关系。
例题:下列四个关系式:①x y 4=;②x y =2;③2x y =;④x y =;其中y 是x 的函数的是________2、函数的三种表示方法(难点)(1)列表法 (2)关系式法 (3)图像法(三种表示方法可以相互转化)3、函数的值及自变量的取值范围(重点)(1)函数值:对于自变量在取值范围内的一个确定的值a ,函数有唯一确定的对应值,称为自变量等于a 时的函数值。
(2)自变量取值范围:使得函数有意义的自变量的全体取值,叫做自变量的取值范围。
确定自变量取值范围需要注意两点:一是必须使含有自变量的代数式有意义;二是必须满足实际问题的意义。
(例如当自变量表示物体个数时只能是非负整数)例题:求下列函数中自变量的取值范围841-=x y 215+=x y y =二、一次函数与正比例函数1、一次函数的概念(重点)若两个变量x 、y 间的对应关系可以表示成 (k 、b 为常数, )的形式,则称y 是x 的一次函数。
一次函数标准形式: ( )一次函数要满足两个条件:(1)x 、y 的次数均为1;(2)系数k __________例题:当m 为何值时,函数28(3)(4)m y m x m -=++-是一次函数?2、正比例函数的概念(重点)对于一次函数 ( ),当0b =时,变为 ,这时把y 叫做x 的正比例函数。
正比例函数标准形式: ( )正比例函数是一次函数的特殊形式,即一次函数包含正比例函数。
正比例函数满足三个条件:(1)x 、y 的次数均为 ;(2)系数k ;(3)常数b 例题:如果函数3(2)m y x m -=+-是正比例函数,那么=m _____________例题:已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.3、根据条件求一次函数的关系式(难点)认真分析,探究实际问题中的有关信息,再此基础上建立数学模型,从而解决问题。