离子型聚合
- 格式:pdf
- 大小:113.50 KB
- 文档页数:5
1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别?离子聚合:需使中性分子生成离子对,此时要求较高的能量,所以生成的粒子不稳定,必须在聚合之前用溶剂在低温下使之稳定,不能使用强极性溶剂,多在低温弱极性溶剂中反应,选择溶剂的原则应考虑极性大小。
溶剂的极性增加有利于链增长,使聚合速率加快,而阴离子对溶剂的要求是采用极性较低或中等极性的溶剂,极性较高可分解成强亲电基团或强亲核基团;自由基溶液聚合对溶剂的要求是:1.选择溶剂的连转移常数Cs较小的溶剂2.选择良溶剂,构成均相体系,有可能的消除自动加速效应。
2阴离子配位催化剂的主要组成由哪儿?住催化剂:由周期表中第3-8族的过渡金属构成的化合物助催化剂:由周期表中1-3族的金属的有机化合物组成第三组分:通常是具有给电子能力的路易斯碱,如含N,P,和O等化合物,可以提高催化剂的定向性和引发活性3如何提高配位催化剂的效率加入第三组分,扩大催化剂的表面积,增加活性组分的有效活性中心4什么是活性聚合引发体系的引发之前,预先100%迅速变为活性中心,然后以相同的速率同时引发单体增长,直至单体耗尽任保持活性。
5 何谓定向聚合能制备立构规整性聚合物的聚合反应。
立构规整性聚合物也称立构规整性高分子、定向聚合物。
自然界存在着许多立构规整性聚合物,如天然橡胶、纤维素、蛋白质和淀粉等6 目前那些高分子是采用离子型和配位阴离子型合成工艺来生产的? 写出反应式并注明所用催化剂7.铝-钛催化剂为何能制的结构规整的聚烯烃乙烯先于钛原子配位,然后插入Ti-C键并与之形成桥键。
当单体与聚合物链的次甲基生成r键的同时,原来的碳铝桥键破裂而形成新的碳铝桥键,因此增长一个链节。
如此重复进行则的聚乙烯大分子。
8.比较正.负离子聚合,配位阴离子聚合,自由基聚合的特征自由基:慢引发,快增长,速终止,有转移阴离子:快引发慢增长无终止阳离子:快引发慢增长易转移难终止配位聚合:1.采用Z-N催化剂2.聚合机理为配位聚合3.具有定向性4.配位聚合用的单体有选择性5.溶剂要求严格缩聚反应1.试述缩聚反应的分类及实施方法分类:按反应热力学特征分为:可逆缩聚和不可逆缩聚;按所生成产物结构分:线性缩聚和体型缩聚;按参加反应单体分类:均缩聚异缩聚和共缩聚实施方法:熔融缩聚:聚合温度高于单体和缩聚物熔点,反应在熔融状态下进行。
高分子化学练习(离子聚合、配位聚合)一、名词解释1、离子型聚合反应2、配位聚合反应3、立体异构4、几何异构5、光学异构6、定向聚合反应7、立构规整度二、填空1、带有取代基的烯类单体,大都可以进行阳离子型聚合反应,阳离子型聚合反应的引发剂都是试剂,主要有、两大类型。
2、带有取代基的烯类单体,大都可以进行阴离子型聚合反应,阴离子型聚合反应的引发剂都是试剂,主要有、两大类型。
3、阴离子型聚合反应的一个重要特点是。
4、高聚物的立体异构有两种、。
5、聚丙烯三种立体异构体是指、、。
6、典型的齐格勒引发剂是,典型的纳塔引发剂是。
7、配位阴离子聚合的特点是。
8、阴离子聚合机理的特点是。
9、阳离子聚合机理的特点是。
10、Z-N引发剂通常有两个组分构成、。
三、选择题1、下列单体能进行阳离子聚合的是()A、异丁烯B、乙烯C、丙烯腈D、氯乙烯2、下列单体能进行阴离子聚合的是()A、异丁烯B、乙烯C、丙烯腈D、氯乙烯3、离子对的形式对离子聚合聚合速率的影响正确的是()A、松离子对〉紧离子对〉自由离子对B、紧离子对〉自由离子对〉松离子对C、自由离子对〉松离子对〉紧离子对D、紧离子对〉松离子对〉自由离子对4、离子对的形式对离子聚合控制结构单元排列整齐的能力的影响正确的是()A、松离子对〉紧离子对〉自由离子对B、紧离子对〉松离子对〉自由离子对C、自由离子对〉松离子对〉紧离子对D、紧离子对〉松离子对〉自由离子对5、下列物质可以作为阳离子聚合引发剂的是()A、CF3COOH、BF3-H2O引发体系B、AIBNC、BPOD、丁基鋰6、离子聚合不可能发生的终止方式是()A、链转移B、双基偶合终止C、自发终止D、加入终止剂终止7、对于阳离子聚合机理说法正确的是()A、快引发、快增长、易转移、难终止B、慢引发、快增长、速终止、可转移C、快引发、慢增长、无终止8、阴离子聚合机理说法正确的是()A、快引发、快增长、易转移、难终止B、慢引发、快增长、速终止、可转移C、快引发、慢增长、无终止9、形成活性聚合物的首要条件是()A、单体不易发生链转移B、溶剂是惰性溶剂C、聚合体系无杂质D、没有明显的链解聚反应10、相对分子质量分布窄、可以进行“计量聚合”是()A、活性高聚物的特征B、阳离子聚合的特征C、配位聚合的特征D、自由基聚合的特征11、由分子中原子或原子或原子团在空间排布方式不同所引起的不同构型称为()A、结构异构B、构象异构C、构型异构、D、立体异构12、配位聚合引发剂中加入第三组分的目的是()A、提高引发剂的定向能力和聚合速率B、防止降解C、避免诱导期D、防止自聚四、判断题1、离子聚合相对于自由基聚合、链引发活化能低、聚合速率快。
离子聚合知识点总结离子聚合的原理主要是通过离子化合物之间的静电相互作用来进行高分子化合物的合成。
一般来说,离子聚合可以分为两种类型:阴离子聚合和阳离子聚合。
阴离子聚合是指一种以带负电荷的离子为单体进行的聚合反应,而阳离子聚合是指一种以带正电荷的离子为单体进行的聚合反应。
这两种类型的离子聚合反应在原理上有一些相似之处,但在反应过程和条件上有一些不同之处。
一般来说,离子聚合的反应过程可以分为以下几个步骤:首先是单体的离子化,将单体分子转化成带电荷的离子;然后是离子的相互作用,使带电的单体离子之间发生静电吸引;最后是链的生长,通过构建链状结构将离子单体连接起来形成高分子化合物。
在这个过程中,离子聚合反应需要考虑一些重要的因素。
首先是单体的选择和制备,选择合适的带电荷的单体对于反应的成功至关重要。
其次是反应条件的选择,温度、溶剂、催化剂等因素都对反应的效果有重要影响。
此外,反应过程中也需要考虑离子的稳定性和聚合物的结构控制等问题。
离子聚合在许多领域中有广泛的应用。
在生物医学领域,离子聚合可以用来制备生物可降解的高分子材料,用于药物释放、组织修复等方面。
在材料科学领域,离子聚合可以用来制备具有特殊性能的聚合物材料,例如离子交换膜、离子凝胶等。
在化学工程领域,离子聚合也可以用来制备各种功能性高分子化合物,为工业生产提供新的材料和技术。
总的来说,离子聚合是一种重要的高分子化学反应方法,它可以产生具有特殊结构和性能的高分子化合物,对于许多领域的研究和应用都具有重要意义。
随着化学和材料科学的发展,离子聚合技术也将进一步得到发展和应用,为人类的生产和生活带来新的进步和改善。
第二章 离子型聚合反应、配位聚合反应及开环聚合反应第一节 概述高聚物的形成反应,按反应机理不同分类连锁聚合反应−−−−−→−依活性种不同分y 自由基型聚合反应、离子型聚合反应、 配位聚合反应。
两大类逐步聚合反应−−−−−−→−依参加反应的单体分缩聚反应、开环逐步聚合反应、 逐步加聚反应1.离子型聚合反应是在阴离子或阳离子引发剂作用下,使单体分子活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应。
根据链增长活性中心所带电荷的不同,离子型聚合可以分为:阳离子聚合 阴离子聚合 配位离子型聚合.2.特征:(1)对单体的选择性高。
(2)链引发活化能低,聚合速率快(低温下进行聚合反应)。
(3)离子型聚合反应活性中心是离子(C +、C—)(4)引发剂为亲核、亲电试剂,且引发剂自始自终对聚合有影响。
(5)不能双基偶合终止,只能通过与杂质或人为加入的终止剂(水、醇、酸、胺等)链转移进行单基终止反应.注:(1)配位聚合反应也是离子型聚合反应的一种.所用的引发剂具有特殊的定位作用,形成的活性中心为配位阴离子,单体采用定向吸附、定向插入而已。
但所得产物具有立构规整性好、物理性能优异的特点。
(2)开环聚合多数属于离子型聚合反应。
但究竟是阴离子型还是阳离子型取决于引发剂的类型。
合成具有醚键高聚物的主要是采用开环聚合。
第二节 阳离子聚合反应阳离子聚合反应:是在阳离子引发剂作用下,使单体分子活化为带正电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应.一、单体与引发剂 1。
单体(1)具有强推电子取代基的烯烃类单体(异丁烯、乙烯基醚) (2)具有共轭效应的单体(苯乙烯、丁二烯、异戊二烯) (3)含氧、氮、硫杂原子的不饱和化合物和环状化合物(甲醛、四氢呋喃、3,3-双氯甲基丁氧环、环戊二烯、环氧乙烷、环硫乙烷及环酰胺)等.(4)碳阳离子的稳定性与结构有关,稳定顺序为:叔碳阳离子>仲碳阳离子>伯碳阳离子,相应的烯烃单体活性顺序与之相反.(5)碳阳离子主要化学性质是:溶剂效应、重排、结合 2.引发剂-—“亲电试剂" (1)含氢酸(质子酸)H+A -+ CH 2=C → CH 3-C+A -如:H 2SO 4、HClO 4、CCl 3COOH 等 (2)Lewis 酸CH 3 CH 3CH 3 CH 3L ewi s酸是Frie del-Craft s催化剂中的各种金属卤化物,是电子接受体。
离子聚合反应的特点是什么离子聚合反应是一种重要的化学反应类型,其特点主要表现在反应过程和产物特性上。
在离子聚合反应过程中,通常涉及带电离子的结合或相互作用,从而形成高聚物。
以下是离子聚合反应的一些特点:1. 离子间相互作用离子聚合反应中的原料通常是带电的单体或离子,它们之间通过静电力和化学键相互作用,从而快速形成高分子化合物。
这种离子间相互作用使得离子聚合反应具有较高的反应速率和选择性。
2. 高反应活性由于离子聚合反应中涉及带电原料的反应,使得反应活性较高,产生的高分子通常具有较高的分子量。
这种高反应活性也使得离子聚合反应可以在较温和的条件下进行,提高了反应的效率和产物的质量。
3. 特定的催化剂作用在一些离子聚合反应中,特定的催化剂可以加速反应的进行,提高产物的收率和质量。
这些催化剂往往能够促进离子间的结合和聚合过程,使得反应更加顺利进行。
4. 产物性质多样离子聚合反应所得的高分子产物具有多样的性质,可以通过反应条件的调控来获得不同结构和性能的高分子化合物。
这种特点使得离子聚合反应在材料学和生物化学领域具有广泛的应用前景。
5. 反应条件灵活由于离子聚合反应涉及到多种原料和反应条件,因此反应条件相对灵活,可以根据不同的需要进行调整。
通过调控溶剂、温度、催化剂等因素,可以实现对反应过程的精确控制,得到符合要求的产物。
综上所述,离子聚合反应具有高反应活性、产物性质多样、反应条件灵活等特点,使得它在化学领域中具有重要的地位和广泛的应用前景。
随着对离子聚合反应机理和控制方法的深入研究,相信将会有更多新颖的高分子化合物被开发出来,为人类社会的发展做出更大贡献。
第三节自由基聚合及离子型聚合引言:什么是自由基聚合?阐明自由基聚合与连锁聚合、离子型聚合、缩合(逐步)聚合的关系。
1. 按聚合机理(即有无活性中心)可分为:(分别说明特点)连锁聚合、逐步聚合(缩合聚合)2. 按连锁聚合活性中心的种类(自由基、阴离子、阳离子)分为:自由基聚合、阴离子聚合、阳离子聚合⑴连锁聚合条件:①活性种存在②单体中存在活性种能进攻的弱键⑵活性种形成:均裂、异裂、(取代基的影响)举例:乙烯(自由基聚合)、异丁烯(阳离子聚合)、丙烯氰(阴离子聚合)、苯乙烯(自由基、阴离子、阳离子)一、自由基的产生单体分子借光、热、辐射或引发剂的作用产生初级自由基,初级自由基引发单体产生单体自由基,单体自由基迅速增长形成聚合物。
其中,最常用的是引发剂(引发剂是一类分子结构上含有弱键、在一定的温度下弱键断裂产生自由基的低分子物质)1.引发剂类型:⑴偶氮类:如AIBN,分解温度:50-70o C;分解速率慢、活性低、稳定但有毒⑵过氧化物类:如BPO,低活性、分解温度60-80o C⑶氧化-还原体系:如过硫酸盐-亚铁盐体系:活性大,引发速率高,可室温或低温聚合2. 引发剂的选择⑴首先根据聚合方法选择使用那类引发剂:本体、悬浮和溶液聚合:偶氮类和有机过氧化物类油溶性引发剂乳液、水溶液聚合:水溶性引发剂(如过硫酸盐)、氧化还原体系⑵其次,根据聚合温度具体选择哪种引发剂:):引发剂分解至起始浓度一半时所需的时间选择依据:引发剂半衰期(t1/2二、自由基聚合反应机理(链引发、增长、终止、链转移)1.链引发⑴引发剂分解生成初级自由基:吸热反应、活化能高、分解速率低⑵初级自由基与单体加成形成单体自由基:放热反应、活化能低、分解速率高2.链增长:单体自由基迅速增长形成大分子链自由基⑴特点:放热反应、活化能低、增长速率极高⑵结构单元间的连接形式:头—头连接、头—尾连接,一般以头—尾为主3.链终止:(链自由基活性极高,有相互作用作用终止失去活性的倾向)。
自由基聚合与离子型聚合特征区别
引发剂种类 > 自由基聚合:
采用受热易产生自由基的物质作为引发剂
引发剂的性质只影响引发反应,用量影响 Rp和> 离子聚合:
采用容易产生活性离子的物质作为引发剂
* 阳离子聚合:亲电试剂,主要是Lewis酸,需共引发剂 * 阴离子聚合:亲核试剂,主要是碱金属及其有机化合物引发剂中的一部分,在活性中心近旁成为反离子其形态影
响聚合速率、分子量、产物的立构规整性自由基聚合
离子聚合:对单体有较高的选择性
环状化合物、羰基化合物
溶剂的影响
自由基聚合
溶剂加入,降低了[M],Rp略有降低水也可作溶剂,进行悬浮、乳液聚合
离子聚合
溶剂种类:阳:卤代烃、CS2、液态SO2、CO2;阴:液氨、醚类 (THF、二氧六环)
反应温度自由基聚合:取决于引发剂的分解温度,50 ~80 ℃ 离子聚合:引发活
化能很小
为防止链转移、重排等副反应,在低温聚合,阳离子聚合常在-70 ~-100 ℃进行。
聚合机理
自由基聚合:多为双基终止
单体结构
离子聚合:具有相同电荷,不能双基终止
阳:向单体、反离子、链转移剂终止
阴:往往无终止,活性聚合物,添加其它试剂终止
机理特征:自由基聚合:慢引发、快增长、速终止、可转移阳离子聚合:快引发、
快增长、易转移、难终止阴离子聚合:快引发、慢增长、无终止
阻聚剂种类自由基聚合:氧、DPPH、苯醌阳离子聚合:极性物质水、醇,碱性物质,苯醌阴离子聚合:极性物质水、醇,酸性物质,CO2
问题:有DPPH和苯醌两种试剂,如何区别三种反应?
感谢您的阅读,祝您生活愉快。
第六章离子型聚合
1.基本概念:
活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。
化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。
开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。
阴离子聚合阳离子聚合配位聚合定向聚合活性聚合
开环聚合定向指数(立构规则度)立构规整性聚合物活性聚合物
2. 阴离子聚合、阳离子聚合与配位聚合的单体、引发剂及引发反应
3. 各种连锁聚合反应的特点比较
4. 阴离子聚合、阳离子聚合与配位聚合的反应机理特点
5. 影响离子聚合的因素
6. 离子聚合活性中心的的四种形态
7. 基本计算
1)阳离子聚合动力学
阳离子聚合动力学研究较自由基聚合困难,因为阳离子聚合体系总伴有共引发剂,使引发体系复杂化;离子对和(少量)自由离子并存,两者的影响难以分离;聚合速率极快,引发和增长几乎同步瞬时完成,数据重现性差;很难确定真正的终止反应,稳态假定不一定适用等。
为了建立速率方程,多选用低活性引发剂,如SnCl4进行研究,并选择向反离子转移作为(单分子)终止方式,终止前后引发剂浓度不变。
得到聚合速率方程为
推导如下:
阳离子聚合机理为
链引发反应
链增长反应
向反离子转移终止
各步的速率方程如下
引发
增长
终止
式中 为所有增长离对的总浓度
K为引发剂、共引发剂配合平衡常数
ki、kp、kt分别为链引发、增长、终止反应的速率常数
引入稳态假定, 代入引发和终止速率方程解得离子对总浓度
代入链增长速率方程即得:
(2)阳离子聚合平均聚合度
阳离子聚合物的聚合度综合式可表示为
式中 、 、 分别代表单基终止、向单体转移和向溶剂转移终止对聚合度
的贡献。
为阳离子向单体转移的链转移常数, 为阳离子向单体转移的链转移常数。
公式推导如下:
自由基聚合中结构单元数取决于链增长速率
而大分子数取决于终止速率
在阳离子聚合中,向单体转移和向溶剂转移是主要的终止方式,向单体和溶剂转移的速率方程如下:
本章前已推得
链增长速率为
链终止速率为
取倒数即得
当向单体转移为主要终止方式时,平均聚合度简化为
当向溶剂转移为主要终止方式时,平均聚合度为
(3)活性阴离子聚合动力学
链增长速率为
式中阴离子活性增长种的总浓度 始终保持不变,可实验测得,这与自由基聚合中活泼难测的活性自由基不同,这就为什么阴离子聚合的动力学如此简单的原因。
(4)活性阴离子聚合物平均聚合度
式中 为引发剂浓度, n 为每一大分子所带有的引发剂分子数。
8. 定向指数(立构规则度)的表征与测定方法
9. 阴离子聚合、阳离子聚合与配位聚合的应用实例。