液相色谱分析--仪器分析
- 格式:pdf
- 大小:279.91 KB
- 文档页数:5
色谱图仪器分析实验报告一、实验目的本实验旨在通过使用色谱图仪器对样品的成分进行分析,掌握色谱仪的操作步骤和原理,提高实验操作技巧,理解色谱技术在分析中的应用。
二、实验原理色谱图仪是一种分离和分析化学物质的仪器。
它的原理是基于物质在色谱柱中通过相互作用后在不同的时间点相继排出,形成色谱图。
常见的色谱技术包括气相色谱(GC)和液相色谱(LC)。
本实验主要以液相色谱为例进行分析。
液相色谱将待测样品溶解于流动相,通过液相流动将样品载送到柱子中,样品与固定在柱子上的固定相发生相互作用,不同成分在相互作用力的影响下以不同的速率通过柱子,并在检测器中形成峰。
检测器可以通过对各个峰进行测量和分析,最终得到样品的成分信息。
三、实验步骤1. 实验前准备准备待测样品及相关试剂,检查色谱仪的操作状态,并进行必要的预热和标定。
2. 溶解样品将待测样品溶解于溶剂中,并进行适当的稀释,使样品的浓度满足分析要求。
3. 注射样品使用微量注射器,将稀释后的样品注射到色谱柱中。
4. 色谱条件设置设置色谱柱温度、流动相流速和组成,以及检测器参数。
5. 开始分析点击色谱仪上的开始按钮,开始流动相的流动,观察样品在色谱柱中的分离情况,记录检测器上出现的峰的数目和峰的形状。
6. 数据处理使用数据处理软件对收集到的数据进行峰面积、峰高等参数的测量和计算,绘制色谱图。
四、实验结果与讨论在本次实验中,我们以某种药物作为待测样品,通过色谱仪进行分析。
根据实验步骤,我们成功地将溶解后的药物样品注射到色谱柱中,在设定的色谱条件下进行了分析。
在观察色谱图的过程中,我们发现在某个特定的时间点,药物样品在检测器上形成了一个明显的峰。
根据峰的形状和峰的位置,我们可以初步判断药物样品中的化学成分。
通过数据处理软件进行峰面积、峰高等参数的测量和计算,我们得到了更精确的分析结果。
根据峰面积的大小,我们可以推测药物样品中不同成分的含量。
然而,在实验过程中我们也遇到了一些困难。
第17章HPLC法17.1 内容提要17.1.1 基本概念高效液相色谱法──在经典液相色谱法的基础上,引入了气相色谱(GC)的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,使之发展成为高分离速率、高分离效率、高检测灵敏度的高效液相色谱法,易称为现代液相色谱法。
高效液相色谱仪──采用了高压输液泵、高效固定相和高灵敏度检测器等装置的液相色谱仪称为高效液相色谱仪。
梯度洗脱──用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续的改变流动相的浓度、配比和极性,使样品中各组分能在最佳的分配比下出峰的操作技术。
也称为梯度淋洗。
低压梯度──又称外梯度,特点是先混合后加压。
它是采用在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱系统,易称为泵前混合。
高压梯度──又称内梯度,特点是先加压后混合。
它有两台高压输液泵、梯度程序器(或计算机及接口板控制)、混合器等部件组成。
两台泵分别将两种极性不同的溶剂输入混合器,经充分混合后进入色谱柱系统,是一种泵后高压混合形式。
柱外效应──由色谱柱以外的因素引起的色谱峰形扩展的效应。
柱外因素常指从进样口到检测器之间,除色谱柱以外的所有死时间,如进样器、连接管、检测器等的死体积,都会导致色谱峰形加宽、柱效下降。
液固吸附色谱法──以固体吸附剂为固定相,吸附剂表面的活性中心具有吸附能力,样品分子被流动相带入柱内,它将与流动相溶剂分子在吸附剂表面发生竞争吸附性。
K值大的强极性组分易被吸附,K值小的弱极性组分难被吸附,样品组分因此被分离。
液液分配色谱法──根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同,有不同的分配,从而实现分离的方法。
分配系数较大的组分保留值也较大。
正相分配色谱法──流动相极性低而固定相极性高的称为正相分配色谱法。
反相分配色谱法──流动相极性高而固定相极性低的称为反相分配色谱法。
化学键合相──利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而形成的各种性能的固定相。
高效液相色谱法(HPLC) 是在气相色谱和经典液相色谱的基础上,采用高压泵、高效固定相以及高灵敏度检测器等新实验技术建立的一种液相色谱分析法。
特点:高压、高柱效、高灵敏度2.HPLC中分离条件的选择:a.固定相与装柱方法的选择:选粒径小的、分布均匀的球形固定相(dp≤10μm)首选化学键合相,匀浆法装柱b.流动相及其流速的选择: 选粘度小、低流速的流动相c.柱温的选择:选室温25-30℃左右。
太低流动相黏度增加,太高容易产生气泡第一节液-固色谱法1.液-固色谱法是利用各组分在固定相上的吸附能力不同进行分离的,也称液-固吸附色谱。
2.分离原理.:组分分子与流动相分子竞争吸附吸附剂表面活性中心,靠组分分子的分配比不同而分离。
3.吸附剂吸附试样的能力,主要取决于吸附剂的比表面积和理化性质,试样的组成和结构以及流动相的性质等。
1)组分与吸附剂的性质相似时,易被吸附;2)组分分子结构与吸附剂表面活性中心的刚性几何结构相适应时,易于吸附。
吸附色谱是分离几何异构体的有效手段;不同的官能团具有不同的吸附能力,因此,吸附色谱可按族分离化合物4.固定相:常用的液-固色谱固定相是表面多孔和全多孔微粒型硅胶、氧化铝等。
一般采用5~10μm的全多孔型微粒。
这些吸附剂的极性都比较大,对非极性组分的保留能力较弱,与极性化合物的相互作用较强。
5.流动相:在液-固色谱中,选择流动相的基本原则是极性大的试样用极性较强的流动相,极性小的则用低极性流动相。
液-固色谱的流动相必须符合下列要求:1)能溶解样品,但不能与样品发生反应。
2)与固定相不互溶,也不发生不可逆反应。
3)粘度要尽可能小,这样才能有较高的渗透性和柱效。
4)应与所用检测器相匹配。
例如利用紫外检测器时,溶剂要不吸收紫外光。
5)容易精制、纯化、毒性小,不易着火、价格尽量便宜。
第二节化学键合相色谱法1.液液分配色谱法分离原理:根据物质在两种互不相溶的液体中溶解度的不同,在两溶液间进行不同分配而实现分离。
第二章高效液相色谱分析§2.1 高效液相色谱法概述(掌握)2.1.1 高效液相色谱法的特点1、与经典液相色谱法比较2、与气相色谱法比较3、高效液相色谱法的发展A、固定相的变化填料粒度减小,粒型规整;键合型固定相;整体结构固定相;亲和固定相。
目前,出现使用1.0µm填料的超高压液相色谱。
B 、流动相变化目前,出现120~220℃超热水为流动相、FID 和FPD 检测器的HPLC 。
C 、全新方法剪切流路液相色谱;不同分离机制组合的多维液相色谱以及HPLC 与MS 、NMR 、IR 联用的多维液相色谱法。
4、高效液相色谱法的特点①高压 :采用高压输液设备,(150~350)× 105 Pa ②高速:分析速度快; ③高效:柱效很高。
(n>30000),可以在数分钟内完成数百种物质的分离;④高灵敏度:10—9g (UV );10—11g (荧光检测)。
5、高效液相色谱法的局限①溶剂用量太大;②缺乏诸如气相色谱使用的TCD 、FID 通用型检测器; ③不能替代气相色谱法,难分离化合物(柱效10万以上),必须使用毛细管气相色谱法进行分离; ④不能替代中、低压柱色谱法,一些生物活性化合物不能承受200kPa ~1MPa 压力。
§2.2 影响色谱峰扩展及色谱分离的因素(了解)2.2.1 影响色谱峰的扩展的因素高效液相色谱法的基本概念及理论基础,与气相色谱法是基本一致的,其区别主要在于流动相的不同。
现根据速率理论及色谱峰扩展及色谱分离的影响讨论如下:高效液相色谱的范氏方程:2222m p sm p s fd m p mm s C d C d C d C D H d u u u D D D λ⎛⎫=++++ ⎪ ⎪⎝⎭ 若将上式简化,可写作:BH A Cu u=++这与气相色谱的速率方程形式是基本一致的,主要区别在于纵向扩散项可以忽略不计,影响柱效的主要因素是传质项。
仪器分析—高效液相色谱法高效液相色谱(HPLC)是一种分离和定量化学物质的分析技术。
它广泛应用于生物医药、食品安全、环境监测等领域。
HPLC的原理基于样品在流动相中的分配行为,通过调节流动相成分和流速,实现对样品中化合物的分离和定量。
HPLC的特点之一是分离效率高。
其分析柱内有高效填料,通常是细小颗粒的吸附剂,能够提供大的表面积,有效地增加了分析柱与流动相接触的面积,从而提高了分离能力。
此外,在HPLC中还可以根据需要选择适当的流动相,调节柱温和压力等条件,进一步优化分析条件,提高分离效果。
其次,HPLC的灵敏度高。
在HPLC中,使用的检测器通常有紫外-可见光谱法、荧光法、质谱法等。
这些检测器可以实现对特定化合物的高选择性检测,而且还能够对不同化合物进行同时检测。
对于低浓度的化合物,可以通过选择合适的检测器和优化分析条件,提高检测灵敏度,使得即使在样品中含量很低的化合物也能够被准确地检测到。
此外,HPLC在分析速度和样品处理方面也比较快捷。
与传统的柱色谱技术相比,HPLC使用的高压泵可以提高流动相的速度,从而缩短分析时间。
对于样品预处理方面,使用HPLC时只需要进行简单的处理,如溶解样品并过滤,就可以直接进入分析阶段。
这使得HPLC具有高通量分析的优势,能够在短时间内快速分析大量样品。
此外,HPLC还可与其他技术结合应用。
例如,HPLC-质谱联用技术可以实现对样品中化合物的分离和结构的同时鉴定,具有非常高的分析灵敏度和选择性。
HPLC还可以与色谱预处理、液相萃取和样品前处理等技术结合,提高样品的净化效果和检测灵敏度。
综上所述,HPLC是一种高效、灵敏和多功能的分析技术,被广泛应用于各个科学领域。
它的分离效率高,灵敏度高,分析速度快,样品处理简便,可以与其他技术结合使用,提高分析的效果和可靠性。
在今后的科学研究和实际应用中,HPLC将继续发挥重要的作用。
液相色谱分析法
-------复方阿司匹林有效成分的分析
姓名:高伟
班级:环工0801
学号:200829090119
知识准备:
复方阿斯匹林由阿斯匹林、非那西汀和咖啡因三种药物组成。
阿司匹林分子式为C9H8O4,非那西汀,分子式为:C10H13NO2。
咖啡因C8H10N4O2。
容量分析法、胶束薄层色谱法、PLS-紫外分光光度法、区带毛细管电泳法分别对三个成分进行了成功测试,研究发现液相色谱分析法可以很好的分析复方阿司匹林的各种成分。
实验过程:
a) 实验原理
由于阿司匹林类药品在生产和储运过程中容易吸潮分解生成水杨酸,此外样品在溶解和分析过程中有时也有降解现象,因此在APC片的分析测试中不可忽略其水解产物水杨酸的干扰因素。
HPLC 技术在药物分析中有很多应用,以往对APC 的测定很少考虑其降解因素。
本文实验发现,用二氯甲烷-乙腈混合溶剂溶解样品,在甲醇-水体系中加入少量乙酸和磷酸作为流动相,既能有效避免阿司匹林的进一步降解,又可以将三个组分与水杨酸很好分离,据此建立的HPLC 法可以同时测定APC 片中各种成分。
b) 仪器和试剂
岛津LC-10A高效液相色谱仪;十八烷基键合固定相色谱柱(岛津VP-ODS 150Lx4.6);20μL定量进样管;紫外检测器;甲醇和乙腈为色谱纯;二氯甲烷、乙酸和磷酸为分析纯;APC和水杨酸的对照品为分析纯;复方阿司匹林片。
c) 实验步骤
1) 混合对照品标准溶液的制备
按处方配比准确称取阿司匹林0.2268g、咖啡因0.0350g和非那西汀0.1620g,置于同一干净烧杯中,用二氯甲烷-乙腈(V:V=3:2)溶解后转入500mL容量瓶中,稀至刻度制成浓度为0.8476g ·L-1的混合对照品标准溶液。
其中阿司匹林、咖啡因和非那西汀的浓度分别为0.4536g ·L-
1、0.0700g ·L-1和0.3240g ·L-1。
2) 样品储备溶液的制备
将准确称重的市售APC片20片(9.8741g)于乳钵中研细混匀,准确称取相当于1片的重量(0.4937g)置于干净烧杯中,用适量二氯甲烷-乙腈(V:V=3:2)充分溶解并滤除残渣后,转移至500mL容量瓶中稀至刻度。
色谱条件的选择流动相是甲醇—水—乙酸—磷酸,体积比
46:52:1.5:0.5;紫外检测波长为279nm;柱温35℃;洗脱速度为0.8 mL·min -1。
3) 测定方法
用注射器将适量待测物溶液(多于20μL)注入定量管,通过六通阀切入色谱流路进行分离测定,以色谱峰面积进行外标法定量。
d) 结果和讨论..
线性关系和精密度
将0.8476 g ·L-1的混合对照品标准溶液分别稀释成150.0、80.0、50.0、25.0、10.0、5.0、2.5、1.0、.. 0.5μg·mL-1的标准系列溶液,在选定的色谱条件下进
样测定;由于混合对照品溶液中阿司匹林、非那西汀和咖啡因的质量浓度比为0.2268:0.162:0.035,据此可以准确算出标准系列中三个组分的准确质量浓度,分
别以各组分的峰面积对其质量浓度做回归方程可以发现都有很好的线性关系。
此外,用10μg ·mL-1的标准系列溶液连续平行测定12次,计算其相对标准偏差。
各组分的线性关系和精密度
准确度
用混合对照品标准液配制3个不同浓度的标准样品,用以上建立的方法进行测定
从表中可见,阿司匹林的回收率为98.56%~101.57%,平均值为
99.84%;非那西汀的回收率为98.90%~101.57%,平均值为100.29%;咖啡因的回收率为99.23%~101.51%,平均值为100.57%。
表明方法的准确度很好。
e) 实际样品测定
准确移取4.00mL样品储备溶液于250mL容量瓶中稀释至刻度制成样品测试溶液进行分析测定,用外生命科学仪器2005 第3卷/第6期标法定量。
平行测定五次的平均结果见表3所示。
样品中组分含量的计算公式为:
市售正痛片的测定结果
由表可见,咖啡因和非那西汀的测定含量与处方含量十分接近,而阿司匹林的测定含量明显低于处方含量。
这主要是由于阿司匹林部分降解后转变成了水杨酸,致使阿司匹林的含量减少。
在样品的色谱图中可以明显看到水杨酸的存在。
此外,同样用外标法对水杨酸进行定量分析,测得水杨酸含量为15.1 mg·片 -1。
实验讨论
1样品溶剂
通过对APC片在多种溶剂中溶解性和稳定性的比较发现,二氯甲烷-乙腈(V:V=3:2)溶液对APC片的溶解性和稳定性均较好,实验表明,在48h内测定样品溶液,各组分峰的积分面积数值基本不变,可以认为阿司匹林无明显的降解现象。
2流动相
反相色谱中常用的流动相是甲醇-水体系和乙腈-水体系。
本实验发现,阿司匹林在中性含水体系中水解严重,而在酸性含水体系中水解现象可以得到抑制。
本实验以甲醇—水-乙酸-磷酸(体积比
46.0:52.0:1.5:0.5)为流动相,既可使各组分有很好的分离度,又能保证组分在2小时内无水解现象。
3.检测波长
用三个组分的对照品进行紫外扫描可见,三个组分的最大吸收波长各不相同;而在279nm处三个组分的峰型相对比较适中,虽然此时三个组分皆非最大吸
收,但能较好地兼顾各组分的同时测定。
应用范围
液相色谱法的应用:高效液相色谱分析法更适宜于分离,分析高沸点.热稳定性差,生理活性以及相对分子质量较大的物质,因而应用于核酸,肽类,内酯,稠环芳香烃,高聚物,药物,人体代谢产物,生物大分子,表面活性剂,抗氧剂等的分析,在化工,环保临床药物等领域广泛应用,目前在生命科学中又显示出其突出的地位。