第七章 压杆稳定
- 格式:ppt
- 大小:4.29 MB
- 文档页数:82
材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
第7章压杆稳定判断1、“压杆失稳的主要原因是由于外界干扰力的影响“2、“同种材料制成的压杆,其柔度越大越容易失稳“3、“压杆的临界压力与材料的弹性模量成正比“4、“两根材料、长度、横截面面积和约束都相同的压杆,其临界力也必定相同“5、“对于轴向受压杆件来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题“6、“细长压杆的长度加倍,其他条件不变,则临界力变为原来的1/4;长度减半,则临界力变为原来的4倍。
“7、“满足强度的压杆不一定满足稳定性;满足稳定性的压杆也不一定满足强度”8、“合金钢的稳定性一定比碳素钢的好”选择1、压杆失稳是指在轴向压力作用下:。
A:局部横截面的面积迅速变化;B:危险面发生屈服或断裂;C:不能维持平衡状态而发生运动;D:不能维持直线平衡而发生弯曲;2、理想均匀压杆的工作压力P达到临界压力P cr时处于直线平衡状态,受一干扰后发生微小弯曲变形,解除干扰后,则压杆。
A:弯曲变形消失,恢复成直线状态;B:弯曲变形减小,不能恢复成直线状态;C:微弯变形形态保持不变;D:变形继续增大;3、一细长压杆当轴向压力P达到临界压力P cr时受到微小干扰后发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形。
A:完全消失;B:有所缓和;C:保持不变;D:继续增大;4、下图中的长度系数μ=?A:μ<0.5;B:0.5<μ<1.0;C:0.7<μ<2.;D:μ>2;5、下图中的长度系数μ=?A:μ<0.7;B:0.7<μ<1.0;C:1.0<μ<2.;D:μ>2;6、细长杆承受轴向压力P,杆的临界压力Pcr与无关。
A:杆的材质;B:杆长;C:杆承受的压力;D:杆的形状;7、图示中钢管在常温下安装,钢管会引起钢管的失稳。
A:温度降低;B:温度升高与降低都会引起失稳;C:温度升高;D:温度升高或降低都不会引起失稳;8、压杆的失稳将在纵向面内发生。
第七章压杆稳定本章重点介绍有关压杆稳定的基本概念和压杆临界力的计算方法,简单说明其它形式构件的稳定性问题。
第一节压杆稳定的概念考察图7-1所示的受压理想直杆,当压力F小于某一数值时,在任意小的扰动下,压杆偏离其直线平衡位置,产生轻微弯曲,当扰动除去后,压杆又回到原来的直线平衡位置。
这表明压杆的直线平衡是稳定的。
当压力逐渐增加达到一定数值时,压杆在外界扰动下,偏离直线平衡位置,扰动去除,则不能再回到原来的直线平衡位置,而在某一弯曲状态下达到新的平衡,因此称该直线平衡是不稳定的。
从稳定平衡状态过渡到不稳定平衡状态的压力极限值,称为临界载荷或临界力,用F cr表示。
压杆丧失直线形式平衡状态的现象称为丧失稳定,简称失稳。
图7-1杆件失稳后,压力的微小增加将引起弯曲变形的显著增大,从而使杆件丧失承载能力。
但细长压杆失稳时,杆内的应力不一定高,有时甚至低于材料的比例极限。
可见,压杆失稳并非强度不足,而是区别于强度、刚度失效的又一种失效形式。
由于压杆稳定是突然发生的,因此所造成的后果也是严重的。
历史上瑞士和俄国的铁路桥,都发生过因为桥桁架中的压杆失稳而酿成的重大事故。
因此在工程实际中,对于压杆稳定性问题必须充分重视。
当压杆的材料、尺寸和约束等情况已经确定时,临界力是一个确定的值。
因此可根据杆件实际的工作压力是小于还是大于压杆的临界力,来判断压杆是稳定的还是不稳定的。
可见解决压杆稳定的关键问题是确定压杆的临界力。
第二节细长压杆的临界载荷一、两端铰支细长压杆的临界力取一根两端为球铰的细长压杆,使其处于微弯的平衡状态,选取相应的坐标系(图7-2a)。
考察微弯状态下任意一段压杆的平衡(图7-2 b),则杆件横截面上的弯矩为(a)根据挠曲线近似微分方程,有(b)将式(a)代入式(b),有(c)其中(d)微分方程(c)的一般解为(e)其中C1、C2常数,可根据两端支承的约束边界条件确定,在两端铰支的情况下,边界条件为(0)=(l)=0将微分方程的解代入,得C2=0, C1sinkl=0 (f)后式表明,C1或者sinkl等于零。
178第二十三章 压杆稳定一、 内容提要1、稳定的概念压杆的稳定性:压杆保持初始直线平衡状态的能力。
压杆的失稳:压杆丧失直线形状的平衡状态。
临界载荷:保持压杆稳定平衡时杆件所能承受的最大外力。
2、临界应力的计算大柔度杆( )中柔度杆( )小柔度杆( ) 说明:(1)压杆的临界应力在稳定问题中相当于强度问题中的极限应力,是确定稳定许用应力的依据。
(2)一种材料的极限应力是由材料本身的性质决定的。
压杆的临界应力除决定于材料外,还与杆的柔度有关,(3)根据 的值判断压杆的类别(大柔度杆、中柔度杆或小柔度杆),选用相应的计算临界力的公式。
3、压杆的稳定计算压杆的稳定性条件其中 安全系数法折减系数法说明(1)与强度问题类似,稳定计算也存在三方面的问题:稳定校核、截面设计、计算许可载荷。
(2)杆件丧失稳定是一种整体性行为,横截面的局部削弱对稳定的临界应力影响不大,因此在稳定计算时采用横截面的毛面积。
二、 基本要求1. 明确稳定平衡、不稳定平衡和临界载荷的概念,理解两端铰支压杆临界载荷公式的推导过程。
2. 理解长度系数的力学意义,熟练掌握四种常见的约束形式下细长压杆的临界载荷的计算。
p s λλλ≤≤p λλ>s λλ<22λπσE cr =λσb a cr -=scr σσ=λ[]crA N σσ≤=[]w crcr n σσ=[][]σϕσ=cr1793. 明确压杆柔度、临界应力和临界应力总图的概念,熟练掌握大柔度、中柔度和小柔度三类压杆的判别方法及其临界载荷的计算和稳定性的校核方法。
4. 了解根据压杆稳定性条件设计杆件截面的折减系数法。
5. 了解提高压杆稳定性的主要措施。
三、 典型例题分析例1 三根圆截面压杆直径均为 ,材料为 钢, MPa b 12.1=), , , , 两端均为铰支,长度分别为 且 , 试计算各杆的临界力。
解 (1)有关数据(2)计算各杆的临界力1杆 属大柔度杆2杆 属中柔度杆3杆属小柔度杆mm d 160=MPa E5102⨯=MPa p 200=σMPa s 240=σ,,,321l l l m l l l 542321===,304(MPa a =3A 2222210202.016.044mm d A -⨯==⨯==ππ45441022.316.06464md I -⨯=⨯==ππm d i 04.0416.04===1=μ10010200102611=⨯⨯==πσπλpp E5712.1240304=-=-=ba ss σλ10012504.05111=>=⨯==p il λμλKNl EIP cr 2540)(212==μπ5.6204.05.2122=⨯==il μλMPab a cr 2342=-=λσKNA P cr cr 46801021023426=⨯⨯⨯=⋅=-σ2.3104.025.1133=⨯==il μλ180例2 截面为 的矩形木柱,长 , 。