接触网自动过分相系统原理
- 格式:doc
- 大小:753.50 KB
- 文档页数:3
在电力牵引的铁路线上,国家电力系统提供的电力是三相交流电,但接触网要向电力机车提供单相交流电。
为了使接触网从电力系统的三相交流电网取得电流时基本平衡,接触网采取分段分相取得电流的方法,这样一来,接触网就划分为一个个不同的分相段,互相连接的两个分相段由不同的两相供电。
电力机车在通过这些接触网分相区时,必须断开机车上的主断路器,依靠惯性通过分相区之后,再接通主电路。
司机在操纵电力机车通过分相区时要随时观看地面标志,并在几分钟时间内完成控制手柄退级、关闭辅助机组、断开主断路器、过分相区后合上主断路器、开启辅助机组、控制手柄逐步进级等一系列操作。
稍有疏忽,就会带电闯分相,造成相间短路,烧坏绝缘分相器,导致事故发生。
随着列车速度的不断提高,列车在一个绝缘分相段内运行的时间减少,特别是高速铁路,如果还沿用传统的手工过分相的方法,司机每十分钟就需要进行一遍复杂的通过分相的操作。
而且由于列车运行速度快,司机反应和操作时间短,出现失误造成事故的可能性大大提高。
不仅如此,在重载线路上,由于过分相必须切断机车主发动机的电源,从而使列车在短时间内失去动力,速度降低,尤其在长大坡道和出站地段,影响更大,甚至可能造成列车非正常停车。
自动过分相装置就是针对上述问题目前世界上研究使用的自动过分相装置大体有三种方式:地面开关自动切换方式(日本);柱上开关自动断电方式(瑞典);车上自动控制断电方式(英、法等国)。
地面开关自动切换方式是在地面上两个相邻的分相段之间,设置一个由真空负荷开关控制的中性段,这个中性段挎着两个分相段。
电力机车和电力动车组通过分相区时,真空负荷开关依次接通中性段,不间断地向机车供电,使机车在不失去动力的状态下安全通过分相区。
柱上开关自动断电方式是用受电弓间接外接触导线,这种方式方式不太适合我国的电压制式,容易造成电弧烧损。
车上自动分相控制方式是在电力机车上安装一套自动控制装置,该装置能够在机车通过分相时自动完成原来靠司机人工操控的断电、合闸等一系列动作,使机车无负载的通过分相区。
上海铁道增刊2019年第2期87电r uns动辺分ili目技朮月祈王波通号(长沙)轨道交通控制技术有限公司摘要保证重载高速列车顺利平稳通过电分相区段,对目前的接触网电分相及供电方式提出了新的要求。
通过从最初的自动过分相装置到目前的同相供电技术的基本原理及应用的梳理研究,为进一步应用提供参考。
关键词自动过分相装置;同相供电技术重载高速轨道交通,牵引供电一般均采用单相交流25kV电压等级供电,单一供电臂不能过长,一般不超过20 km(AT供电也不超过40km),各个供电臂之间必须设置分相装置。
虽然分相装置技术不断进步,从最初的器件式向关节式发展.从最初的六跨式关节、七跨式,直到十一跨式,但所有关节都存在中性段问题,机车必须在经过中性段时进行断电通过。
这对机车的速度、分相设置的位置、相关的信号标识、司乘人员的精力、及其他辅助的设施等都提出了要求。
特别是重载列车,大坡度区段,曾经发生过列车停在中性区,请求救援的事件发生,给正常运输秩序带来很大的影响。
在市域铁路中,由于线路曲线半径较大、速度较慢,很容易发生机车停留在中性区的现象。
随着列车速度的提高,为了克服这些问题,采取了一系列技术措施。
1早期的自动过分相技术(装置)1.1地面自动转换电分相装置通过轨道电路来控制断路器S1、S2的断、合;保持中性段分别与A相段和B 相段同相,保证机车通过Fl、F2断口时,可以不断电通过(如图1所示)。
图1地面转换过电分相结构图1.2柱上式电分相自动转换装置和地面自动转换电分相原理基本相同,主要是在支柱的杆顶布置,省去了地面建设和空间,结构相对简单。
在设备和结构上是对称布置的,能够适应正反向行车要求。
1.3车上式过电分相自动转换装置主要是在店里机车控制室及电分相区域安装必要的装置和设备,以至于不需要人工干预而实现电力机车自动转换的电分相装置。
主要是地面感应器,车载感接收装置,主电路设备,控制设备等自动进行机车主断路器的断、合操作。
第三部分自动过分相基础知识问答3.1、接触网电分相通常出现在什么位置?自动过分相转换装置的转换区是如何嵌入的?答:接触网电分相通常出现在:1,两个变电所相邻供电臂处(分区所附近),2,同一变电所的两个供电臂出口处。
自动过分相转换装置的转换区是在接触网分相处嵌入的,其两端分别由8+4跨锚段关节空气绝缘结构1JY、2JY与两相接触网绝缘。
这种装置通过转换可以保证机车受电弓滑动时持续受流,以实现自动过分相功能。
解释:接触网电分相就是把线路上两个不同相位的电分开(如果不设分相,电力机车通过时其受电弓就会把不同相位的两路电短路),接触网电分相设在线路上两相电相邻处即:1、两个变电所相邻供电臂处(分区所附近),2,同一变电所的两个供电臂出口处。
.3.2、自动过分相转换装置中的断路器294、294B、294C和292、292B、292C、及隔离开关2941、2902、2921分别跨接在转换装置的什么位置?如何组合的?主要任务是什么?答:以桥头所为例(如下图)294、294B、294C和292、292B、292C 分别跨接在1JY、2JY上,使两相接触网能通过它们轮流向转换区供电。
2941接神木方向上行馈线,2921接朔州方向上行馈线,2902为分相转换区引入隔离开关。
组合:294、294B、294C、2941接神木方向的上行馈线电源,292、292B、292C、2921接朔州方向上行馈线电源,2902接中性区。
主要任务:现实两相电源的自动转换。
3.3、1JY、2JY是什么设备?自动过分相装置线路上传感器的作用是什么?共设有几套传感器?每套有几台?如何工作的?答:以桥头所为例(如上图)1JY、2JY是跨锚段关节空气绝缘。
自动过分相装置线路上传感器作用是:为控制系统提供列车位置信息,共设有5套传感器;每套有2台:30传感器和40传感器;两台传感器同时工作,30传感器先动作,40传感器后动作;当其中一台传感器故障时(单机故障)发出二级报警,传感器处于无备用状态,列车可以正常的自动过分相;当两台传感器同时故障时(双机故障)发出一级报警,自动过分相装置自动退出运行。
CRH自动过分相装置原理当机车得到过分相预告信号后,首先进行确认,然后封锁触发脉冲,延时断开主断路器,使机车惰行通过无电区。
在通过无电区后,由机车自动检测网压从无到有的跳变并确认,再合主断路器,顺序启动辅机,然后限制电流上升率,启动机车。
除分相预告信号与地面设施有关外,其余一切操作都由机车自动完成,无需人工干预。
在离分相区两端约60 m处的线路上,左、右各埋1块磁铁,一个分相区只需要4块磁铁。
机车头部靠近铁轨处左右各设1个感应器,当机车通过磁铁时,感应器就接收到信号,再由感应器向机车微机控制系统发送110 V电平的预告信号。
机车微机控制系统在收到该预告信号后延迟一定时间,向感应器发出一个20 ms宽、110 V电平的复位信号,使感应器复位,预告信号随之消失。
所延迟的时间用于完成对预告信号的确认,封锁触发脉冲,等待电机电流衰减和断开主断路器,并留有一定余量。
但延时时间不能太长,必须保证机车开始进入分相区时使感应器复位,以便进行下一次的检测。
当机车驶离分相区时,感应器也相应动作,机车在经过同样延时后再次使感应器复位,而这一次感应器所发的信号没有实际意义,它只是为了线路上车辆双向行驶的需要才设置的。
图1信号的时序图。
机车上为了实现自动过分相的功能,一是必须在主断路器前设置25 kV的高压电压互感器,以便检知是否已过了分相区;二是利用微机系统已有的硬件:1个数字输入口用于检知预告信号,2个数字输出口,分别发出感应器复位信号及合主断路器命令。
自动过分相分主断路器命令,可与机车保护用的分主断路器命令合用,由软件来区分主断分的原因。
国产相控电力机车上一般都装有高压互感器,用于提供一次侧电压信号和检测无功功率。
所以为了实现过分相的自动控制,一般不需另行增加设备。
实现机车上过分相的自动控制,对微机控制的机车(如SS8、SS9、SS4B)来说是不难解决的,主要通过软件来实现;而对于模拟控制的相控机车(如SS4改、SS3B、SS6、SS6B),则需进行改造,加装一些小设备;对于用调压开关进行调压的机车(如SS1、SS3)则较难于实现。
接触网自动过分相系统原理引言接触网是供电系统中的重要组成部分,它负责将电能传输给行驶中的电力机车。
在高速铁路运营中,为了保证电力机车的运行安全和高效,接触网的供电方式需要进行相分离,即将电能从接触网分配到不同的相线上,以避免电机过载和接触网断电等问题。
本文将介绍接触网自动过分相系统的原理。
1. 接触网自动过分相系统的概述接触网自动过分相系统是由一组传感器、控制器和执行器组成的系统,它能够实时监测接触网的电流、电压和负荷,并根据监测结果自动调整接触网的分相,以保证供电系统的稳定运行。
2. 接触网自动过分相系统的工作原理接触网自动过分相系统的工作原理可以分为以下几个步骤:2.1 传感器的作用接触网自动过分相系统通过安装在接触网上的传感器来实时监测接触网的电流、电压和负荷情况。
传感器可以将监测到的数据传输给控制器,以便进行后续的处理。
2.2 数据分析与处理控制器接收传感器传输的数据后,会对数据进行分析和处理。
它会根据接触网的电流、电压和负荷情况判断是否需要进行分相。
如果接触网的负荷较大或电流过大,控制器会发出指令,要求执行器进行分相操作。
2.3 分相操作执行器是接触网分相的核心部件,它是根据控制器的指令进行操作的。
执行器可以调整接触网上的分相开关,将电能从接触网分配到不同的相线上。
在分相过程中,执行器需要保证分相的平稳和迅速,以避免对供电系统的影响。
2.4 监测与反馈分相操作完成后,自动过分相系统会重新监测接触网的电流、电压和负荷情况,并将监测结果反馈给控制器。
控制器会根据反馈的数据进行进一步的分析和处理,以判断是否需要进行进一步的分相操作。
3. 接触网自动过分相系统的优势接触网自动过分相系统相比传统的手动分相方式具有以下优势:•自动化程度高:接触网自动过分相系统能够实现对接触网的自动监测和分相操作,大大降低了人工操作的工作量和操作难度。
•实时性强:系统通过传感器实时监测接触网的电流、电压和负荷情况,并能够即时作出反应和调整,以满足变化的供电需求。
电力机车自动过分相方案的探讨摘要:介绍了3种自动过分相方案的工作原理及实际应用情况,分析了它们各自的优点和缺点,并建议在准高速和高速电气化线路上采用第3种方案,即车上自动控制断电方案。
关键词:电力机车接触网电分相供电死区中性段自动过分相为使电力系统三相负荷尽可能平衡,电气化铁道的接触网采用分段换相供电。
为防止相间短路,各相间用空气或绝缘物分割,称为电分相。
国内接触网上每隔20k m~25k m就有一长约30m的供电死区。
在此无电区外一定距离处设有“断”、“合”提示牌,电力机车通过时须退级、关闭辅助机组、断开主断路器,惰行通过无电区后再逐项恢复,这样受电弓是在无电流情况下进出分相区的,从而保证了受电弓和接触网的寿命。
但这样操作,一方面影响了行车速度,另一方面增加了司机的劳动强度,操作稍有疏忽就会拉电弧烧分相绝缘器。
对准高速、高速线路,每小时就要过10多个分相区,靠司机操作实属困难。
对高坡重载区段,手动过分相会引起列车大幅降速,延长咽喉区段的运行时间,降低线路运能。
因此必须考虑列车自动过分相的方案,及早取消司机的手动过分相操作。
国外仅有少数国家研究和采用自动过分相装置,其技术方案基本上有3种:地面开关自动切换方案,柱上开关自动断电方案,车上自动控制断电方案。
下面将对这3种方案进行介绍、分析和比较。
1地面开关自动切换方案这种方案国际上以日本为代表,解决了东海道新干线上高速列车自动过分相的难题。
国内郑州铁路局西安科研所在咸阳附近对这种方案进行了研究和试验。
这种方案的工作原理见图1。
在接触网分相处嵌入一个中性段,其两端分别由绝缘器J Y1、J Y2与二相接触网绝缘。
J Y1、J Y2不采用一般的由绝缘物构成的分相绝缘器,而采用锚段关节结构,以保证受电弓滑过时能连续受流。
2台真空负荷开关Q F1、Q F2分别跨接在J Y1、J Y2上,使接触网两相能通过它们向中性段供电。
在线路边设置4台无绝缘轨道电路C G1~C G4作为机车位置传感器。
第二节 工作原理
本系统是基于免维护地面定位技术的车载自动过分相控制系统。
机车通过感应地面定位信号确定机车与分相点的相对位置,地面定位和机车感应信号分别采用斜对称埋设和备份接收,以保证自动过分相的安全和可靠。
图5 地面感应器的埋设方式
如图5所示,预先根据要求在每个分相区前后分别埋设两个地面感应器。
以机车Ⅰ端向前运行为例,安装在机车Ⅰ端左侧的感应接收器设为1号,右侧设为2号,Ⅱ端左侧的感应接收器设为3号,右侧设为4号(如图6所示)。
图6 地面感应接收器在机车上安装位置示意图
机车按图5箭头方向运行在通过地面磁性感应器时,T2号或T4号感应接收器接收到车位定位信号(G1感应器信号),控制装置记录机车即时速度V ,控制装置根据速度计算出延时时间t ,t=170m/v-t 0,t 0时间包括司机指令回零时间、各辅助机组断开时间、劈相机断开时间和主断路器断开时间。
同时,司机台的过分相指示灯亮,表示控制装置已接收到分相点前车位定位信号,控制装置开始进行自动过分相控制。
经过延时t 后,控制装置分别执行司机指令回零,通风机、压缩机和劈相机断开动作,最后执行主断路器断开动作。
机车无负荷通过分相区间后,如控制装置的任何一个感应接收器接收到车位定位信号,表明机车已通过分相区间,控制装置分别执行主断路器闭合,启动劈相机、压缩机和通风机,最 T3 T1
Ⅱ端
端
T4 T2
后恢复司机指令。
机车恢复原有状态。
司机台的过分相指示灯熄灭,表明控制装置已完成自动过分相控制。
在某些特殊情况下,如:地面感应器丢失、感应接收器故障或信号线断等原因。
控制装置的T2号或T4号感应接收器接收不到车位定位信号。
控制装置的T1号或T3号感应接收器接收到车位定位信号(G2感应器信号),司机台的指示信号灯亮,表示控制装置已接收到车位定位信号,控制装置立即执行司机指令回零,通风机、压缩机、劈相机和主断路器断开动作。
2.1感应接收器
自动过分相的关键技术是定位,定位是否准确是系统准确性和可靠性的关键。
感应接收器安装在机车的转向架上,采用密封防水、防震设计处理,保证系统的可靠运行。
安装在机车转向架上的感应接收器通过地面感应器时,在感应接收器上感应一个幅值和宽度与机车运行速度相对应的信号。
感应接收器安装于机车下部转向架的两侧,共四个,前后相互备份。
感应接收器基于电磁感应原理,感应接收器线圈与地面感应器的磁场相结合,完成系统的定位识别。
具有识别准确度高、响应时间短、抗干扰能力强、无故障运行时间长等优点。
识别时间约为7ms,试验的最高速度达302km/h。
感应接收器的外型尺寸及管脚定义如图7所示
图7 感应接收器外型尺寸
感应接收器安装尺寸如图8所示
图8 感应接收器尺寸
车载自动过分相装置的感应接收器安装要求:距钢轨中心300mm±10mm,距钢轨踏面110mm+10mm)。
2.2 地面感应器
地面感应器是嵌入到轨枕里的永久磁铁,具有耐高温、耐腐蚀、不会损坏等特点,适合安装在室外。
图9为安装有地面感应器的轨枕。
图9 地面感应器
2.3 控制系统
控制系统是由系统信号处理单元以及控制单元组成。
系统信号处理单元具有采集感应接收器接收的定位信号、机车运行方向、处理相应的信息、发出相关的信息指令、自诊断故障信息、输出显示信息等功能。
系统控制单元则由控制装置的执行电路来实现,主要功能是根据由系统信号处理单元输出的信号,控制牵引电流下降、通风机、压缩机和劈相机断开动作,最后执行主断路器断开动作。
通过分相区后,根据接收到的定位信号,控制闭合主断路器和控制牵引电流平稳上升。
在前进方向右侧的感应接收器分别接收到预告感应器信号和反向强迫感应器信号,以及前进方向左侧感应接收器分别接收到强迫感应器信号和反向预告感应器信号,自动过分相控制装置则屏蔽接收信号16秒后才开始接收感应信号,
否则将屏蔽感应接收信号2分钟后开始感应接收信号。
自动过分相控制装置在通电、屏蔽接收信号结束或通过分相区后进行一次自检。
自检不通过则速度/故障指示灯发出1Hz 的故障信号(红色和绿黄色指示灯交替亮),装置停止使用,采用手动控制过分相。