高速电气化铁路接触网第2章 接触网的设计计算
- 格式:ppt
- 大小:5.03 MB
- 文档页数:10
第二章高速铁路牵引供电系统供电方式第一节牵引供电系统供电方式交流牵引供电系统可采用的供电方式主要有4种:直接供电方式,BT(吸流变压器)供电方式,AT(自耦变压器)供电方式和CC(同轴电缆)供电方式。
交流电气化铁道对邻近通信线路的干扰主要是由接触网与地回路对通信线的不对称引起的。
如果能实现由对称回路向电力机车供电,就可以大大减轻对通信回路的干扰。
采用BT、AT、CC等供电方式就是为了提高供电回路的对称性,其中CC供电方式效率最高,但投资过大。
目前,电气化铁路对采用BT、AT供电方式。
下面逐一介绍。
一、直接供电方式这是一种最简单的供电方式。
在线路上,机车供电由接触网(1)和轨(2)-地直接构成回路,对通信干扰不加特殊防护措施,如图2-1所示。
电气化铁路最早大都采用这种供电方式。
这种供电方式最简单,投资最省,牵引网阻抗较小,能损也较低,供电距离一般为30—40km。
电气化铁路的单项负荷电流由接触网经钢轨流回牵引变电所。
由于钢轨和大地不是绝缘的,一部分回流由钢轨流入大地,因此对通信线路产生感应影响,这是直接供电方式的缺点。
它一般用在铁路沿线无架空通信线路或通信线路已改用地下屏蔽电缆区段,必要时也将通信线迁到更远处。
图2-1带回流线的直接供电方式是在接触网支柱上架设一条与钢轨并联的回流线,称为负馈线(NF),如图2—2所示。
利用接触网与回流线之间的互感作用,使钢轨中的回流尽可能地由回流线流回牵引变电所,减少了电气空间,因而能部分抵消接触网对邻近通信线路的干扰,但其防干扰效果不及BT供电方式。
这种供电方式可在对通信线路防干扰要求不高的区段采用,能进一步降低牵引网阻抗,供电性能要好一些,但造价稍高。
目前我国京广线、石太线均采用此种供电方式。
图2—2二、BT供电方式BT供电方式是在牵引网中架设有吸流变压器—回流线装臵的一种供电方式,目前在我国电气化铁路中应用较广。
吸流变压器的变比是1:1.它的一次绕组串接在接触网中(1)中,二次绕组串接在专为牵引电流流回牵引变电所而特设的回流线(NF)中,故称之为吸流变压器—回流线供电方式,如图2—3所示。
接触网工程课程设计评语:考勤(10)守纪(10)设计过程(40)设计报告(30)小组答辩(10)总成绩(100)专业:电气工程及其自动化班级:电气1001姓名:学号:指导教师:兰州交通大学自动化与电气工程学院2013 年7月18日目录1题目 (1)2高速铁路接触网悬挂方式 (1)2.1 简单链型悬挂 (1)2.2 弹性链形悬挂 (1)2.3 复链形悬挂 (2)2.4 三种悬挂类型的综合比较 (2)3接触线选型 (3)4 承力索 (3)5.张力自动补偿装置 (4)(1)滑动式张力自动补偿装置......................................................................... 错误!未定义书签。
6、张力计算 (4)11、题目.高速电气化铁路接触网悬挂模式设计设计内容:对各种悬挂模式进行分析比较,确定适合高速运行接触网的悬挂模式,选择接触线、承力索、吊弦、弹性辅助索等的型号,计算其张力,进行张力补偿的设计。
2、高速铁路接触网悬挂方式接触网的分类主要以接触网悬挂类型来区分,在一条接触网线路上,无论是在区间还是在站场,为满足供电和机械性能方面要求,总是将接触网分成若干长度且相互独立的分段(即为接触网锚段),接触网悬挂分类是针对架空接触网中每个锚段而言。
到目前为止,现实已经开通运营或正在建设的高速铁路接触网系统悬挂方式主要有三类:简单链型、弹性链型、复链型。
2.1、简单链型悬挂简单链形悬挂是一条接触线通过吊弦悬挂在一条承力索上,承力索通过钩头鞍子或悬吊滑轮悬挂在支持装置上。
此种悬挂方式稳定性的好坏主要取决于接触网系统的跨距、接触线和承力索的张力、吊弦长度、吊弦间距、支持装置及支柱稳定性等技术参数的好坏。
图1 简单链型悬挂2.2、弹性链形悬挂弹性链型悬挂是在简单链型悬挂基础上在每处悬挂点增加Y形弹性吊索,长度一般为8~16m,仍为单链形悬挂。
此悬挂方式稳定性好与坏,除受跨距、承力索和接触线的张力、吊弦、支持装置及支柱稳定性影响外,弹性吊索张力对其稳定性的影响也十分的大。
附件一、接触网常用计算公式:1.平均温度t p和链形悬挂无弛度温度t o的计算t max+t min①t p=2t max+t min②t o弹= -52t max+t min③t o简= -102式中t p—平均温度℃(即吊弦、定位处于无偏移状态的温度);t o弹、t o简—分别表示弹性链形悬挂和简单链形悬挂的无弛度温度℃;t max—设计最高温度℃;t min—设计最低温度℃;2.当量跨距计算公式n∑L I3LD= i=1n∑L I√i=1式中L D—锚段当量跨距(m);n∑L I3=(L13+ L23+……+ L n3)—锚段中各跨距立方之和;i=1n∑L I=(L1+ L2+……+ L n)—锚段中各跨距之和;i=13.定位肩架高度B的计算公式B≈H+e+I(h/d+1/10)h/2式中B—肩架高度(mm);H—定位点处接触线高度(mm);e—支持器有效高度(mm);I—定位器有效长度(包括绝缘子)(mm);d—定位点处轨距(mm);h—定位点外轨超高(mm);4.接触线拉出值a地的计算公式Ha地=a-hd式中a地—拉出值标准时,导线垂直投影与线路中心线的距离(mm)。
a地为正时导线的垂直投影应在线路的超高侧,a地为负时导线的垂直投影应在线路的低轨侧。
H—定位点接触线的高度(mm);a—导线设计拉出值(mm);h—外轨超高(mm);d—轨距(mm);5.接触线定位拉出值变化量Δa max的计算公式Δa max=I z-√I2z-E2max式中Δa max—定位点拉出值的最大变化量(mm);I z—定位装置(受温度影响)偏转的有效长度(mm);E max—极限温度时定位器的最大偏移值(mm);由上式可知E=0时Δa=06.定位器无偏移时拉出值a15的确定:(取平均温度t p=15℃)a15=a±1/2Δa max式中a—导线设计拉出值(mm);Δa max—定位点拉出值的最大变化量(mm);a15—定位器无偏移时(即平均温度时)的拉出值(mm)。
第一章电气化铁路第一节电气化铁路的优越性我国铁路运输的牵引动力,目前主要有蒸汽牵引、内燃牵引和电力牵引三种形式。
以电力牵引作为主要牵引方式的干线铁路称为电气化铁路.我国第一条电气化铁路始建于1958年,1961年8月15日宝鸡——风州段91km建成通车,采用了较先进的单相工频交流供电方式.到2005年底,我国已建成电气化铁路两万公里,成为继俄罗斯、德国之后世界第三电气化铁路大国。
目前,世界高速电气化铁路最高已达330km/h(德国汉诺威——柏林),最高试验速度已达515km/h(法国巴黎——勒芒—-图尔)。
我国于1998年已建成广深为200km/h的高速电气化铁路,秦沈试验为321。
5km/h。
到2020年,我国将达到电气化铁路总里程5万公里,是铁路建设的高潮。
电气化铁路的优越性,主要表现在以下几个方面:一、能多拉快跑,提高运输能力.由于电力机车功率大、速度快,因而能多拉快跑,提高牵引吨数,缩短在区间运行时间,从而可以大幅度提高运输能力.二、能综合利用资源,降低燃料消耗。
由于电力机车的能源可以来自多方面,因而可以综合利用资源,即是在纯火力发电的情况下,电力机车总效率也可达25%左右,为蒸汽机车的四倍多。
三、能降低运输成本,提高劳动生产率.由于电力机车构造简单,牵引电动机和电气设备工作稳定可靠,因而机车检修周期长,维修量少,可以减少维修费用和维修人员。
电力机车不需要添煤、加水和加油,整备作业少,宜长交路行驶,因而可以少设机务段,乘务人员和运用机车台数相应减少.这样就降低了运输成本,提高了劳动生产率。
四、能改善劳动条件,不污染环境。
由于电力机车没有煤烟,使机车乘务员不受有害气体侵害,同时也对沿线的环境不产生污染。
第二节电气化铁路的组成电气化铁路是由电力机车、牵引变电所和接触网组成的。
一、电力机车电力机车由机械、电气和空气管路系统组成。
机械部分,主要包括车体和走行部分.电气部分,主要包括受电弓、主断路器、牵引变压器、转换硅机组、调压开关、整流硅机组、平波电抗器、牵引电动机和制动电阻柜等.空气管路系统,主要包括空气制动、控制及辅助气路系统。
接触网技术课程设计报告班级:学号:姓名:指导教师:评语:2012 年 2 月24 日1.基本题目1.1 题目某地区跨距长度的计算1.2 题目分析跨距就是两相邻支柱间的距离,其长度的决定涉及到一系列经济、技术问题,是接触网设计中重要的问题之一。
跨距有经济跨距和技术跨距两个概念。
单从经济观点考虑问题所决定的跨距为经济跨距;而按技术要求决定的跨距称为技术跨距。
在一般情况下,经济跨距总是要大于技术跨距的。
技术跨距是根据接触线在受横向水平力(如风力)作用时,对受电弓中心线所产生的许克偏移而决定的,对于简单接触悬挂,弛度也是决定跨距的重要因素。
某地区的接触悬挂类型决定了这地区跨距长度的计算结果。
为了能够达到经济和技术的最优化,就需要对两种接触悬挂类型下的跨距长度进行比较。
要使接触线良好地工作,就要保证在受风作用下,接触线对受电弓中心线的受风偏移值不要超过其规定的最大许可值。
根据受电弓滑板的最大工作宽度,铁路工程技术规范规定,在最大计算风速条件下,接触线对受电弓中心的最大水平偏移值不应超过500mm 。
在接触网设计中,仍按此规定处理。
2.跨距长度的计算为了简化计算,假设跨距两端是死固定,即不考虑补偿器的补偿作用,同时认为在受风以后,导线内张力变大,而不考虑张力变大后的导线的弹性伸长。
此时,接触线的水平偏移值b j 如图1所示。
图中表示的是接触线在跨距内任意点的横断面,接触线在水平负载p j 的作用下位于斜面内。
由图中可知图 1接触线的水平受风偏移yj bj p j gv q由图可知vj j q p yb =即 vj j q p yb = (1)接触线在跨距内任意点的弛度y 值可由式 Tx l gx y 2)(-= 得 (2)jv T x l x q y 2)(-⋅=将y 值代入式(2)中得jj j T x l x p b 2)(max -⋅=(3)当x 为l 的中点时,具有最大水平风偏移,即jj j T l p b 82max ⋅=(4)在直线区段上,当接触线布置成之字形时,对其线路中心(也即是受电弓中心)线的偏移巨鼎与y1及y2,如图2所示。
接触网工程课程设计专 业:电气工程及其自动化 班 级: 电气 1104 姓 名: 丁向前 学 号: 201109453 指导教师: 任丽苗兰州交通大学自动化与电气工程学院2014 年 7月 13 日指导教师评语平时(30)报告(30)修改(40)总成绩1设计原始题目1.1题目高速电气化铁路接触网的控制参数设计。
1.2 内容根据高速接触网的控制参数及理论分析,设计武—广高速电气化接触网控制参数。
1.3 设计方案高速接触网控制参数包括静态特性,动态特性,波动速度, 系数等。
本设计主要对接触线的波动传播速度,反射系数,多普勒因数,增强系数,链形悬挂的固有频率五个方面进行计算。
2 设计计算根据文献参考,可以查询得京沪高速电气化铁路的常用参数如表1所示。
表1 京沪高铁各种参数量的名称符号单位名称大小承力索张力C T kN 21接触线张力j T kN 30m kg/m 1.08承力索线密度Cm kg/m 1.08接触线线密度j列车实际速度V km/h 350l m 10近支撑点吊线间隔i跨距l m 652.1波动传播速度波动传播速度:受电弓抬升引起接触悬挂的振动,该点振动波会沿接触悬挂传播,传播的速度称为波动传播速度。
波动传播速度按式(2.1)计算:mTC ∑∑=(2.1)式中: T ∑——接触悬挂承力索(辅助承力索)和接触导线的张力之和(N)m ∑——接触悬挂承力索(辅助承力索)和接触导线的线密度之和(kg/m)C ——接触网的波动传播速度(km/h)将数据代入式2.1得:)km/h (15408.108.13000021000=++=C接触线的波动传播速度: mT C j p 6.3= (2.2)式中:jT ——接触线的张力(N)m ——接触线的密度(kg/m)将数据代入式2.2得)km/h (60008.1300006.3=⨯=p C 2.2反射系数高速运行的接触网的振动波在遇到非均质点(如吊弦、中锚、电连接线夹、定位线夹、分段绝缘器处)时冲击被反射,这种反射影响反射系数,即反射使振动波衰减或增强。
摘要接触网是电气化铁道中供电系统的一个组成部分,保证接触网处在正常的、高效的工作状态,对于保障电气化铁路的正常运营起着十分重要的作用。
因此,设计也日趋精细。
本文在概述接触网基本原理的基础上,系统地阐述了高速电气化铁路接触网的结构特征、支持装置及接触网设备的选择方法,并着重介绍了接触网的设计标准、规范、内容,详细地进行了接触网跨距及风偏移值的校验、支柱容量的计算以及其它的设计计算和安装曲线的绘制。
特别完成了区间和隧道接触网CAD平面布置图。
它全面的总结了高速电气化铁路接触网的设计过程,即有技术性论述,又有理论性分析。
文中依据当地的气象、地质条件和线路资料结合接触网的设计原则完成了包头至惠农某区间的接触网平面设计。
关键词:电气化铁路接触网设计计算平面设计图目录摘要 (I)目录 (II)第一章绪论 (1)第一节电气化铁路的发展概况 (1)第二节本文的工作 (3)第二章接触网设计标准及规范 (4)第一节接触网组成 (4)第二节接触网设计程序 (6)一、初步设计 (6)二、技术设计 (6)三、施工设计 (6)第三节接触网设计内容 (6)一、设计计算 (6)二、平面设计 (7)三、设备选择 (7)四、技术校验 (7)第四节区间平面设计介绍 (7)第五节隧道内接触网的平面设计 (9)一、隧道内接触网的悬挂结构 (9)二、隧道内接触网平面设计的内容及技术原则 (9)第六节接触网的设计标准 (10)一、侧面限界 (10)二、拉出值 (10)三、锚段关节设置 (11)四、中心锚结 (11)五、悬挂模式 (12)六、无交叉线叉 (14)七、电分相装置 (14)八、结构高度 (15)九、接触线的高度 (15)十、接触网的接地与防雷 (15)第七节接触网计算机辅助设计的概述 (15)第三章接触网设备选择 (17)第一节接触线索 (17)一、接触线的主要技术要求 (17)二、CTHA120的主要性能参数 (19)三、承力索的选取 (21)四、吊弦 (22)第二节支柱及支持装置 (23)一、支柱 (23)二、基础 (23)三、支持装置 (24)四、腕臂及定位装置 (25)第四章接触网的设计计算 (27)第一节b值计算 (27)第二节接触线的受风偏移和跨距许可长度的计算 (28)一、直线区段 (28)二、曲线区段 (28)三、缓和曲线区段接触线最大偏移值及跨距值的确定 (29)第三节支柱负载计算 (31)一、垂直负载 (32)二、水平负载 (33)第五章包头至惠农(DK16---DK415)区间的接触网设计 (38)第一节接触网设计计算条件的确定 (38)一、气象资料 (38)二、地质资料 (38)第二节计算负载的确定 (39)一、自重负载 (39)二、冰负载 (40)三、风负载 (40)四、合成负载 (41)第三节设计校检 (41)一、安装曲线 (41)二、接触线的受风偏移和跨距许可计算 (43)三、区间锚段长度的划分 (43)四、支柱负载计算 (44)第四节设计说明 (44)一、线索实际长度的计算 (44)二、悬挂中心至线路中心距离 的计算 (46)三、设计小结 (48)总结 (49)致谢 (50)参考文献 (51)附图1:包头至惠农(DK16+641 --- DK415+974)区间CAD平面设计图附图2:接触网设计安装示意图第一章绪论第一节电气化铁路的发展概况铁道电气化是牵引动力现代化的重要标志,是国家铁路建设和改造的主要发展方向。