第一章空间几何体复习课.ppt
- 格式:ppt
- 大小:530.50 KB
- 文档页数:28
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
第一章空间几何体小结复习一、 学习目标1. 类比记忆棱柱、棱锥、棱台、圆柱、圆锥、圆台及球的左义,并理解空间几何体及组合体 的结构特征:2. 能正确画出空间图形的三视图并能识别三视图所表示的立体模型;3. 在了解斜二测画法的基础上会用斜二测画法画出一些简单图形的直观图:4. 掌握柱体、椎体、台体、球体的表面积与体积的求法,并能通过一些计算方法求岀组合体 的表而积与体积。
二、 学习过程(二)典型例题例1 (1)下列命题中:① 用一个平行于棱锥底而的平而去截棱锥,底而和截面之间的部分叫棱台:② 棱台的各侧棱延长后一宦相交于一点: 空间几何体 棱柱棱锥棱台—► 圆柱—► 圆锥—► 圆台—► 球—> 长对正•商平齐,宽相等 投影线交于一点 投影线平行休枳 表面积③ 圆台可以看做直角梯形以托垂直于底边的腰所在的直线为旋转轴,其余三边旋转形 成的曲而围成的几何体:④ __________________________________________________________________ 以半圆所在直径为旋转轴,半圆旋转一周形成球。
正确命题的序号是 ______________________ O(2) 一棱锥的侧棱都相等,所有的侧而上的髙也相等,则这个棱锥的底面是() A.直角三角形 B.菱形 C.正多边形 D.矩形8000 B. 3D. 4000 例3圆柱内有一个内接长方体AC [t 长方体对角线长是10JN 协,圆柱的侧面展开图为矩 形,此矩形的而积是IOO^VH 2,求圆柱的体积。
例4 一个直角梯形的两底长为2和5,高为4,将英绕较长的底旋转一周,求所得旋转体的 侧面积。
三、 总结提升1•对于空间几何体的结构特征,一是要类比记忆棱柱、棱锥、棱台等多而体的概念性质:二 是圆柱、圆锥、圆台及球都是旋转体,轴截面是解决这四类几何体问题的关键。
2. 对于简单的空间几何体,要能正确画出三视图,同样要由三视图想象出空间几何体的模型; 对于斜二测画法,不仅要理解画法规则,还要能将三视图和宜观图进行相互的转换,而且还 能进行相关的计算。