第10章 界面现象
- 格式:doc
- 大小:477.00 KB
- 文档页数:6
第十章界面现象1.液体在毛细管中上升的高度与基本无关。
A.温度 B.液体密度 C.大气压力 D.重力加速度2.微小晶体与同一种的大块晶体相比较,下列说法中不正确的是。
A.微小晶体的饱和蒸气压大 B.微小晶体的表面张力未变C. 微小晶体的溶解度小D.微小晶体的熔点较低3.水在某毛细管内上升高度为h,若将此管垂直地向水深处插下,露在水面以上的高度为h/2,则。
A.水会不断冒出B. 水不流出,管内液面凸起C. 水不流出,管内凹液面的曲率半径增大为原先的2倍D.水不流出,管内凹液面的曲率半径减小为原先的一半4. 在用最大气泡法测定液体表面张力的实验中,是错误的。
A.毛细管壁必须清洁干净B.毛细管口必须平整C.毛细管必须垂直放置D.毛细管须插入液体内部一定深度5. 在干净的粗细均匀的U形玻璃毛细管中注入纯水,两侧液柱的高度相同,然后用微量注射器从右侧注入少许正丁酸水溶液,两侧液柱的高度将是。
A.相同 B.左侧高于右侧C.右侧高于左侧 D.不能确定6. 在三通活塞两端涂上肥皂液,关闭右端,在左端吹一大泡,关闭左端,在右端吹一小泡,然后使左右两端相通,将会出现什么现象。
A.大泡变小,小泡变大 B.小泡变小,大泡变大C.两泡大小保持不变 D.不能确定7. 在一支干净的、水平放置的、内径均匀的玻璃毛细管中部注入一滴纯水,形成一自由移动的液柱。
然后用微量注射器向液柱右侧注入少量NaCl水溶液,假设接触角不变,则液柱将。
A. 不移动 B.向右移动C.向左移动 D无法判断8. 在潮湿的空气中,放有3只粗细不等的毛细管,其半径大小顺序为:r1>r2>r3,则毛细管内水蒸气易于凝结的顺序是。
A.1,2,3 B.2,3,1C.3,2,1 D无法判断9.人工降雨是将AgI微细晶粒喷洒在积雨云层中,目的是为降雨提供。
A. 冷量 B.湿度 C.晶核 D.温度10. 下面对于物理吸附的描述,不正确。
A.吸附力基于van der Waals力,吸附一般没有选择性B.吸附层可以是单分子层或多分子层C.吸附速度较快,吸附热较小D.吸附较稳定,不易解吸11.下列叙述不正确的是 .A 农药中加入润湿剂可使和减小,药液在植物表面易于铺展;B 防水布上涂表面活性剂使减小,水珠在其上不易铺展;C 泡沫浮选法中捕集剂极性基吸附在矿石表面,非极性基向外易被吸附在泡沫上;D 起泡剂的主要作用是增大液体表面张力。
物理化学第六版第十章界面现象课后思考题摘要:1.物理化学第六版第十章界面现象概述2.课后思考题解答正文:一、物理化学第六版第十章界面现象概述物理化学第六版第十章主要讲述了界面现象,这是物理化学中的一个重要内容。
界面现象是指两种或多种物质相互接触时,由于它们之间的相互作用力不同,会发生的一系列现象。
这些现象包括表面张力、接触角、界面电荷等。
本章主要通过讲述这些现象,使读者了解并掌握界面现象的基本概念和相关知识。
二、课后思考题解答1.问题一:请简述表面张力的概念及其产生原因。
答:表面张力是指液体分子之间的相互作用力。
当液体与气体接触时,液体表面层的分子受到气体分子的吸引,使液体表面层的分子间距大于液体内部分子间距,从而使液体表面形成一个收缩的趋势。
这种使液体表面有收缩趋势的力称为表面张力。
2.问题二:请解释接触角的概念,并举例说明。
答:接触角是指液体与固体接触时,液体与固体的界面形成的角度。
接触角可以用来判断液体与固体的亲水性或疏水性。
当接触角小于90°时,液体与固体呈亲水性;当接触角大于90°时,液体与固体呈疏水性。
例如,水滴在玻璃板上时,水滴与玻璃板接触角大于90°,说明水与玻璃呈疏水性。
3.问题三:请简述界面电荷的概念及其产生原因。
答:界面电荷是指在两种介质接触的界面上,由于介质的极性不同,会产生电荷分布的现象。
当两种介质接触时,如果它们的极性不同,就会在接触界面上产生正负电荷。
这些电荷称为界面电荷。
例如,当金属与非金属接触时,由于金属表面的电子与非金属表面的电子互相转移,会在接触界面上产生界面电荷。
通过以上解答,我们可以更好地理解物理化学第六版第十章界面现象的相关知识。
第十章 界面现象第十章 界面现象10.2. 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的小汞滴,试求此过程系统的表面吉布斯自由能(ΔG )为多少?已知293.15K时汞的表面张力为0.4865N·m -1。
解:设大汞滴和小汞滴的半径分别为R 和r ,1个半径为R 的大汞滴可以分散为n 个半径为r 的小汞滴。
只要求出汞滴的半径从R =1×10-3m 变化到r =1×10-9m 时,其表面积的变化值,便可求出该过程的表面吉布斯函数变ΔG 。
汞滴分散前后的体积不变,即V R =nV r ,所以334433R n r ππ=⨯, 3R n r ⎛⎫= ⎪⎝⎭分散前后表面积的变化 2222444s A n r R nr R ∆πππ=-=-()系统表面吉布斯函数变:3224π4π1s R R G A R R r r ∆γ∆γγ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭()3391104π0.48651101J 6.114J 110---⎡⎤⎛⎫⨯=⨯⨯⨯⨯-=⎢⎥ ⎪⨯⎝⎭⎣⎦10.3. 计算373.15K 时,下列情况下弯曲液面承受的附加压力。
已知373.15K 时水的表面张力为58.91×10-3N·m -1。
⑴水中存在一个半径为0.1μm 的小气泡;⑵空气中存在一个半径为0.1μm 的小液滴;⑶空气中存在一个半径为0.1μm 的小气泡。
解:⑴ ⑵ 两种情况只存在一个气-液界面其附加压力相同。
根据拉普拉斯公式,有第十章界面现象Δp=2γ/r=2×58.91×10-3 N·m-1/(0.1×10-6m)Pa =1.178×103kPa⑶对于空气中存在的气泡,其液膜有内外两个表面,故其承受的附加压力为Δp=4γ/r =4×58.91×10-3 N·m-1/(0.1×10-6m)Pa =2.356×103kPa10.4 在293.15K时,将直径为0.1mm 的玻璃毛细管插入乙醇中。
第10章界面现象10.1 请回答下列问题:(1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生?解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。
产生亚稳定状态的原因是新相种子难生成。
如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。
为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。
(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象?解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。
其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。
当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。
该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。
(3)物理吸附和化学吸附最本质的区别是什么?解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。
物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。
(4)在一定温度、压力下,为什么物理吸附都是放热过程?解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。
同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。
根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。
在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。
10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。
第10章界面现象
10.1 请回答下列问题:
(1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生?
解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。
产生亚稳定状态的原因是新相种子难生成。
如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。
为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。
(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象?
解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。
其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。
当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。
该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。
(3)物理吸附和化学吸附最本质的区别是什么?
解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。
物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。
(4)在一定温度、压力下,为什么物理吸附都是放热过程?
解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。
同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。
根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。
在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。
10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。
解:设大汞滴的半径为r1,小汞滴的半径为r2,小汞滴的数目为N ,因为分散前后的以及不变,故
33
33318112924411011033110=r r N r N r ππ--⎛⎫⎛⎫⨯===⨯ ⎪ ⎪⨯⎝⎭⎝⎭,即个 ()()()()(){}2
122212122
2
218932144440.4865101101106.114d J
A A G A A A N r r Nr r γγγπππγπ--∆==-=-=-=⨯⨯⨯⨯-⨯=⎰ 10.3 计算373.15K 时,下列情况下弯曲液面承受的附加压。
已知373.15K 时水的表面张力为58.91×10-3 N·m -1。
(1)水中存在的半径为0.1μm 的小气泡;
(2)空气中存在的半径为0.1μm 的小液滴;
(3)空气中存在的半径为0.1μm 的小气泡。
解:根据2s p r
γ∆= (1)()362258.91101 1.178100.110
-3
-==kPa s p r γ⨯⨯∆=⨯⨯ (2)()362258.91102 1.178100.110
-3
-==kPa s p r γ⨯⨯∆=⨯⨯ (3)空气中存在的小气泡有内外两个表面,且r 内≈r 外。
即:()364258.91103 2.356100.110
-3
-==kPa s p r γ⨯⨯∆=⨯⨯ 10.4 293.15K 时,将直径为0.1mm 的玻璃毛细管插入乙醇中。
问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m -1,密度为789.4kg·m -3,重力加速度为9.8m·s -2。
设乙醇能很好地润湿玻璃。
解:为防止管内液面上升,则所加压力恰好等于管内附加压,即
3/322cos 222.31010.1102
--== 882Pa s p r r γγθ⨯⨯⨯∆==⨯ /22cos s gh p r r
γγθρ=∆==
即:()332cos 222.31010.1150.110789.49.82--=m h gr γθρ⨯⨯⨯==⨯⨯⨯
10.5 水蒸气迅速冷却至298.15K 时可达过饱和状态。
已知该温度下的表面张力为71.97×10-3 N·m -1,密度为997kg·m -3。
当过饱和水蒸气压力为平液面水的饱和蒸汽压的4倍时,计算。
(1)开始形成水滴的半径;
(2)每个水滴中所含水分子的个数。
解:(1)根据Kelvin 公式:2ln r p M RT p r
γρ= ()33
102271.97101810/ln /8.314298.15ln 47.5610997
r m p M
r RT p γρ---⨯⨯⨯⨯=⨯=⨯即:= (2)()3
10323399747.56104 6.021*********m r N nL L L M M πρπ--⨯⨯⨯====⨯⨯=⨯⨯个
10.6 已知CaCO 3(s )在773.15K 时的密度3900kg·m -3,表面张力为1210×10-3 N·m -1,分解压力为101.325Pa 。
若将CaCO 3(s )研磨成半径为30nm (1nm=10-9m )的粉末,求其在773.15K 时的分解压力。
解:根据Kelvin 公式:2ln r p M RT p r
γρ= 33
92121010100.09108.314773.15ln 101.32539003010139.8--r -r =Pa
p p ⨯⨯⨯⨯⨯=⨯⨯
10.7 在一定温度下,容器中加入适量的完全不互溶的某油类和水,将一直半径为r 的毛细管垂直地固定在油-水界面之间,如下图(a )所示。
已知谁能侵润毛细管壁,有则不能。
在与毛细管同样性质的玻璃板上,滴上一小滴水。
再在水上覆盖油,这时水对玻璃的润湿角为θ,如下图(b )所示。
油和水的密度分别用ρO 和ρW 表示,AA /为油-水界面,油层的深度为h /。
请导出水在毛细管中上升的高度h 与油-水界面张力γOW 之间的定量关系。
解:毛细管的半径为r ,由力的分析可知,水在毛细管中的上升是由于附加压力 ⊿P = 2r /r ˊ(r ˊ为弯曲液面的曲率半径)和管外油柱产生的压力ρ油gh 所致。
因而,达到力的平衡状态时,毛细管内液柱产生的静压力ρ水gh 应与(⊿P+ρ油gh )在数值上相等。
而cos θ= r /r ˊ,故r ˊ= r /cos θ
将此带入上式可得
()2cos =-h gr
γθρρ水油
10.10 473.15K 时,测定氧气某催化剂表面上的吸附作用,当平衡压力分别为
101.325kPa 及1013.25kPa 时,每千克催化剂的表面吸附氧的体积分别为2.5×10-3m 3及
4.2×10-3m 3(已换算为标准状况下的体积),假设该吸附作用服从朗缪尔公式,试计算当氧的吸附量为饱和吸附量的一半时,氧的平衡压力为若干?
解:根据朗缪尔吸附等温式:
1a a m =
bp V V bp
+ 将上式重排得: 11a a a m m =+V V V bp
即有:()31112.510101.325-a a m m
=+V bV ⨯ 1 ()311124.2101013.25-a a m m =+V bV ⨯
由(1)式和(2)式可得:
3110.22-a m
=dm =82.81kPa b V 当V a =a
m V /2时,有 2182.8182.81a a a m m m
=+=kPa p V V pV ,即 10.14 在1373.15K 时向某固体表面涂银。
已知该温度下固体材料的表面张力γ s =9 65 mN·m -1,Ag (l )的表面张力γl = 878.5 mN·m -1,固体材料与Ag (l )的表面张力γ sl = 1364mN·m -1。
计算接触角,并判断液体银能否润湿该材料表面。
解:应用杨氏方程:
s sl l -965-1364cos ===-0.4542878.5γγθγ
θ = 117o > 90 o
故不能润湿。
10.15 293.15K 时,水的表面张力为72.75mN·m -1,汞的表面张力486.5 mN·m -1,而汞和水之间的表面张力为375 mN·m -1,试判断:
(1)水能否在汞的表面上铺展开;
(2)汞能否在水的表面上铺展开。
解:判断液体B 在另一不互溶液体A 上能否铺展,要计算铺展系数S B/A ,当S B/A >0,则能够铺展,贩子则不能铺展。
(1)()22H O H O-Hg Hg -S G γγγ=-∆=-+
()-1
=72.75+375-486.5=38.75mN m 0-⋅> 故能铺展。
(2)同理可求()22Hg H O-Hg H O -S G γγγ=-∆=-+
()
-1
=486.5+375-72.75=-788.75mN m 0
-⋅< 故不能铺展。