合肥工业大学-物理化学习题-第十章、界面现象合并
- 格式:pptx
- 大小:277.67 KB
- 文档页数:24
第十章界面现象10.1在293.15 K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。
10.2计算373.15K时,下列情况下弯曲液面承受的附加压。
已知373.15K时水的表面张力为58.91×10-3 N·m-1。
(1)水中存在的半径为0.1μm的小气泡;(2)空气中存在的半径为0.1μm的小液滴;(3)空气中存在的半径为0.1μm的小气泡。
10.3 293.15K时,将直径为0.1mm的玻璃毛细管插入乙醇中。
问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m-1,密度为789.4kg·m-3,重力加速度为9.8m·s-2。
设乙醇能很好地润湿玻璃。
10.4水蒸气迅速冷却至298.15K时可达过饱和状态。
已知该温度下的表面张力为71.97×10-3 N·m-1,密度为997kg·m-3。
当过饱和水蒸气压力为平液面水的饱和蒸汽压的4倍时,计算。
(1)开始形成水滴的半径;(2)每个水滴中所含水分子的个数。
10.5已知CaCO3(s)在773.15K时的密度3900kg·m-3,表面张力为1210×10-3 N·m-1,分解压力为101.325Pa。
若将CaCO3(s)研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K时的分解压力。
10.6已知273.15K时,用活性炭吸附CHCl3,其饱和吸附量为93.8dm3·kg-1,若CHCl3的分压为13.375kPa,其平衡吸附量为82.5 dm3·kg-1。
§10 界面现象在有关固体催化反应动力学一章中,我们已经简单地讨论了固体物质表面上的一些现象——吸附。
本章将讨论的重点放在液体的界面上。
举例有关界面现象:密切接触的两相之间的过渡区称为界面(interface),约有几个分子的厚度。
实际上,当两个不同的物相之间表现了与两个本体中的不同性质的现象就称为界面现象。
界面的相接触有:s-s,s-l,s-g,l-l,l-g。
界面现象的出现是因为界面层的分子所受到的分子-分子之间的作用力与相本体中的分子所受到作用力不一样,在相本体中的分子受到的作用力是对称的、均匀的,而界面层的分子受到两个不同相中不同分子的相互作用,而作用力是不对称的、不均匀的。
因此界面层的性质与相本体的性质不同。
作用力大的那一相有自动收缩其界面到最小值的趋势。
对于固体物质的界面就表现为对气体或液体物质的吸附。
对于一个体系而言,界面现象(界面性质)所表现的显著程度,取决于体系的相对界面积大小,相对界面积的大小可以用比表面来表示:A o =V A或 A o =mA 比表面小的体系,界面现象表现不显著,常常可以忽略;比表面大的体系,表现出很显著的界面现象。
表13.1为相同体积(或质量)不同尺寸时界面积的大小。
●§10.1表面Gibbs 自由能和表面张力 ● §10.1.1表面Gibbs 自由能和表面张力的概念由于表面上的分子所受到的力与相本体中分子所受到的力不同,所以如果将一个分子从相本体中移到表面成为表面分子(或者说扩大表面积),就必须克服体系内部的分子间作用力而对体系做功。
在等温、等压和组成不变时,可逆地使表面积增加dA 所需要对体系做的功,称为表面功:-δw ’=γdA γ=dAw 'δ- γ为比例系数。
它在数值上等于当等温、等压及组成不变的条件下,增加单位表面积时必须对体系做的可逆非膨胀功。
将表面功引入到热力学中,得到:dU= TdS ―pdV +γdA +∑BμB dn BdH= TdS +Vdp +γdA +∑BμB dn BdF =―S dT ―pdV +γdA +∑BμB dn Bd G=―S dT +Vdp +γdA +∑BμB dn Bγ=(A U ∂∂)S ,V ,n B =(A H ∂∂)S ,p ,n B =(A F ∂∂)T ,V ,n B =(AG ∂∂)T ,p ,n B 从能量的角度上看:γ就是等温、等压及组成不变的条件下,每增加单位表面积时所引起的Gibbs 自由能变化,所以可以称为表面Gibbs 自由能。
《物理化学》课程大纲合肥工业大学一、课程的性质和任务《物理化学》是化学化工类专业学生主要基础理论课。
本课程的目的是在已修先行课的基础上,运用物理和数学的有关理论和方法进一步研究物质化学运动形式的普遍规律;要求学生系统地掌握物理化学的基本原理和方法。
本课程的作用是使学生能系统地掌握物理化学的基本原理和方法,并初步具有分析和解决一些实际问题的能力,为进一步学习各专业课程打下基础。
课程有化学热力学,化学动力学和统计热力学三在部分,细分11章,介绍化学热力学、统计热力学、化学动力学、电化学、表面现象和胶体化学基本知识、原理和方法。
通过课堂多媒体讲授、自学、演算习题和习题课等教学环节,实现教学目标。
三、基本内容绪论(1学时)§0.1 物理化学的研究对象和内容§0.2 物理化学的研究方法§0.3 物理化学的建立与发展§0.4 近代化学的发展趋势和特点§0.5 物理量的表示与运算物理量的表示、对数中的物理量、量值计算第一章气体的PV关系(2学时)§1.1 引言§1.2 理想气体状态方程状态方程,微观模型§1.3 理想气体混合物混合物的组成、道尔顿定律、阿马加定律§1.4 实际流体的pV图及临界参数液体饱和蒸气压、临界参数、实际流体的pV图§1.5 真实气体状态方程几种典型状态方程、压缩因子及波义尔温度、维里方程。
§1.6 对应状态原理及普遍化压缩因子图压缩因子、对应状态原理、普遍化压缩因子图第二章热力学第一定律(8学时)§2.1 热力学的研究对象和基本概念系统及其与环境的关系,状态与状态函数,状态变化过程及途径。
§2.2 热力学第一定律功,热,热力学能,热力学第一定律。
§2.3 恒容热、恒压热、焓恒容热、恒压热、焓、§2.4 物质变温过程的热热容, 标准热容,恒容变温过程,恒压变温过程§2.5 焦耳实验,理想气体的内能和焓焦耳实验及其推论,理想气体变化过程的ΔU和ΔH。
第一章习题答案1.1 物质的体膨胀系数αV 与等温压缩率κT 的定义如下: p v TV V )(1∂∂=αT T pV V )(1∂∂-=κ试导出理想气体的V α、κT 与压力、温度的关系。
解:∵理想气体 pV=nRT∴ ()p nR T p nRT T V pp =⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂/ ()2/-⋅-=⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂p nRT p p nRT pV TT 12)(11-=-⋅-=⎪⎪⎭⎫ ⎝⎛∂∂⋅-=p p nRT V p V V T T κ 则 111-=⋅=⎪⎭⎫ ⎝⎛∂∂⋅=T pnR V T V V p V α1.5 两个容积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中气体的体积,试求该容器内空气的压力。
解:始态: p 0 0℃ p 0 0℃ 末态 p ,0℃ p ,100℃以容器内的空气为系统,则两玻璃泡的体积不变,n 总不变。
211010RT pV RT pV RT V p RT V p +=+ 即 21102T p T p T p +=∴ ⎪⎪⎭⎫ ⎝⎛+=21012T T p p = ⎪⎭⎫ ⎝⎛+⨯K K kPa 15.37315.2731325.1012 = 117.0kPa1.9 如图所示一带隔板的容器中,两侧分别有同温同压的氢气和氮气,二者均可视为理想气体。
(1) 保持容器内温度恒定时抽去隔板,且隔板本身体积可忽略不计,试求两种气体混合后的压力;(2) 隔板抽去前后,H 2和N 2的摩尔体积是否相同?(3) 隔板抽去后,混合气体中H 2与N 2的分压力之比以及它们的分体积各为若干? 解:⑴ 总混混V RT n p=()总VRT n nN H 22+= p V RTRT pV RTpV N H =⎪⎪⎭⎫⎝⎛+=总22 ⑵ 对H 2: pRTn V V H Hm ==22,前 pRT n p RT n n V V H H H H m ===2222/,后∴隔板抽去前后H 2的摩尔体积相同。
第10章界面现象10.1 请回答下列问题:(1)常见的亚稳态有哪些?为什么产生亚稳态?如何防止亚稳态的产生?(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象?(3)下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由。
(4)物理吸附与化学吸附最本质的区别是什么?(5)在一定温度、压力下,为什么物理吸附都是放热过程?答:(1)常见的亚稳态有过饱和蒸气、过热和过冷液体及过饱和溶液。
产生亚稳态的原因是新相种子难以生成。
如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生成新相,因而最初生成的新相的种子是极其微小的,其比表面积和表面吉布斯函数都很大,因此新相难以生成,进而会产生过饱和蒸气、过热和过冷液体以及过饱和溶液等亚稳状态。
为了防止亚稳状态的产生可预先在系统中加入将要产生的新相的种子。
(2)若钟罩内还有该液体的蒸气存在,则长时间恒温放置会出现大液滴越来越大,小液滴越来越小的现象,最终小液滴消失,大液滴不再变化。
其原因在于,一定温度下,液滴的半径不同,其饱和蒸气压不同,液滴越小,其饱和蒸气压越大,当钟罩内气体的饱和蒸气压达到大液滴的饱和蒸气压时,对于小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气会在大液滴上凝结,因而出现了上述现象。
(3)气泡的形状近似于半球状,如不考虑重力影响,则应为半球状。
雨滴落在水面上形成气泡的过程基本上是恒温恒压生成内外表面的过程,当气泡达到稳定状态时,要求其表面吉布斯函数处于最低,而相同体积的气泡则以球状表面积最小,这就是气泡为半球状的原因。
(4)物理吸附与化学吸附最本质的区别在于吸附剂与吸附质间的相互作用力不同,前者是范德华力,而后者则为化学键力。
(5)在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的G∆<0。
同时,气体分子吸附在固体表面,由三维运动变为二维运动,系统的混乱度减小,因此过程系统S∆的<0。
葛华才等编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社第一章热力学第一定律第二章热力学第二定律第三章多组分系统第四章化学平衡第五章相平衡第六章化学动力学第七章电化学第八章界面现象第九章胶体化学第十章统计热力学第一章热力学第一定律计算题1. 两个体积均为V 的密封烧瓶之间有细管相连,管内放有氮气。
将两烧瓶均放入100℃的沸水时,管内压力为50kPa。
若一只烧瓶仍浸在100℃的沸水中,将另一只放在0℃的冰水中,试求瓶内气体的压力。
解:设瓶内压力为p′,根据物质的量守恒建立如下关系:(p′V/373.15)+ (p′V/273.15)= 2(pV/373.15)即p′=2×50 kPa/(1+373.15/273.15)=42.26 kPa2. 两个容器A 和B 用旋塞连接,体积分别为1dm3 和3dm3,各自盛有N2 和O2(二者可视为理想气体),温度均为25℃,压力分别为100kPa 和50kPa。
打开旋塞后,两气体混合后的温度不变,试求混合后气体总压及N2 和O2的分压与分体积。
解:根据物质的量守恒建立关系式p 总(V A+V B)/ 298.15=( p A V A /298.15)+ (p B V B /298.15)得p 总= ( p A V A+ p B V B)/ (V A+V B) = (100×1+50×3) kPa/(1+3)=62.5 kPan(N2)= p A V A /RT A= {100000×0.001/(8.315×298.15)}mol = 0.04034 moln(O2)= p B V B /RT B= {50000×0.003/(8.315×298.15)}mol = 0.06051 mol葛华才编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社-3 y (N 2)= n (N 2)/{ n (N 2)+ n (O 2)}= 0.04034/(0.04034+0.06051)=0.4y (O 2)=1- y (N 2)=1-0.4=0.6分压p (N 2)= y (N 2) p 总 = 0.4×62.5 kPa= 25 kPap (O 2)= y (O 2) p 总 = 0.6×62.5 kPa= 37.5 kPa分体积 V (N 2)= y (N 2) V 总 = 0.4×4 dm 3 = 1.6 dm 3V (O 2)= y (O 2) V 总 = 0.6×4 dm 3 = 2.4 dm 33. 在 25℃,101325Pa 下,采用排水集气法收集氧气,得到 1dm 3 气体。
物理化学第十章界面现象研究内容l-g 弯曲液面的附加压力s-g 物理吸附、化学吸附、吸附曲线界面张力s-l 润湿、接触角、固体自溶液中的吸附Fundamentals of Interface (Surface) Chemistry溶液界面:溶液表面张力特点、表面活性物质§10.1界面张力 10.1界面张力表面和界面(surface and interface) 表面和界面( interface)界面是指两相接触的约几个分子厚度的过渡表面和界面界面现象的本质分散度与比表面表面功表面张力影响表面张力的因素区,若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。
常见的界面有:气-液界面,气-固界面,液-液界面,液-固界面,固-固界面。
界面现象的本质最简单的例子是液体及其蒸气组成的表面。
液体内部分子所受的力可以彼此抵销,但表面分子受到体相分子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表面分子受到被拉入体相的作用力。
这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现象、过饱和状态等。
分散度与比表面(specific surface area)分散度与比表面(specific area)比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。
即:Am = A / m或AV = A / V式中,m和V分别为固体的质量和体积,A为其表面积。
目前常用的测定表面积的方法有BET法和色谱法。
1分散度与比表面从表上可以看出,当将边长为10-2m的立方体分割成10-9m的小立方体时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积,因而具有许多独特的表面效应,成为新材料和多相催化方面的研究热点。