塑性加工原理
- 格式:ppt
- 大小:6.70 MB
- 文档页数:105
塑性成形原理知识点总结一、塑性成形的基本原理1. 塑性成形的基本原理是通过施加外部应力使材料受力,发生形变,从而改变其形状和尺寸。
外部应力可以是拉伸、压缩、弯曲等形式,材料受到应力后发生塑性变形,达到所需的形状和尺寸。
2. 塑性成形的基本原理还包括在一定的温度条件下进行成形。
材料在一定温度范围内会发生晶粒的滑移和再结晶等变化,使材料更容易流动和变形,这对于塑性成形的效果非常重要。
3. 塑性成形的基本原理还涉及到应变硬化和材料流动等方面的知识。
应变硬化是指材料在形变过程中发生的一种增加抗力的现象,材料流动则是指材料在应力作用下发生的形变过程,通过流动来实现所需的成形效果。
二、材料在塑性成形过程中的变形规律1. 材料在塑性成形过程中会发生各种形式的变形,包括平面应变变形、轴向应变变形、弯曲应变变形、扭曲应变变形等。
不同的成形方式会引起不同形式的变形,需要根据具体情况进行分析和处理。
2. 材料在塑性成形过程中的变形还受到横向压缩和减薄等因素的影响。
横向压缩会导致材料沿其厚度方向出现侧向膨胀的现象,减薄则是指材料在成形过程中产生的减小尺寸和厚度的现象。
3. 材料在塑性成形过程中还会出现显著的硬化现象。
随着形变量的增加,材料的硬度和抗力会逐渐增加,这对于成形过程的控制和调整非常重要。
三、材料在塑性成形过程中的流变规律1. 材料在塑性成形过程中会发生流变,即在应力的作用下发生形变的过程。
材料的流变规律是指在应力条件下材料的变形规律和流动规律,这对于塑性成形技术的研究和应用非常重要。
2. 材料在塑性成形过程中还会出现应力和应变的分布不均匀、表面变形、壁厚变化等现象。
这些现象会导致成形件质量的不稳定性和变形过程的复杂性,需要进行合理的控制和调整。
3. 材料在塑性成形过程中还会受到局部热和化学变化的影响。
局部热和化学变化会影响材料的微观结构和性能,对于成形过程的控制和调整也具有重要的参考意义。
四、塑性成形的热变形和冷变形1. 塑性成形通常分为热变形和冷变形两种方式。
一、简述“经典塑性力学”的主要内容,以及“现代塑性力学”的发展概况(选2~3个发展方向加以简单介绍)(20分)答:“经典塑性力学”的主要内容经典塑性理论主要基于凸性屈服面、正交法则和塑性势等概念,描述的是一种均匀连续的介质在外力作用下产生不可恢复的位移或滑移现象的唯象平均。
经典塑性理论主要基于以下三个方面:(1)初始屈服准则;(2)强化准则;(3)流动规则。
经典塑性力学的三个假设(1) 传统塑性势假设。
众所周知,传统塑性势是从弹性势借用过来的, 并非由固体力学原理导出。
因此这是一条假设。
按传统塑性势公式, 即可得出塑性主应变增量存在如下比例关系:(1)式中Q为塑性势函数。
可推证塑性主应变增量与主应力增量有如下关系: (2)由式(1)知式(2)中矩阵[Ap]中的各行元素必成比例,即有(3)且[Ap]的秩为1,它只有一个基向量,表明这种情况存在一个势函数。
由式(1)或式(2) 或传统塑性势理论,都可推知塑性应变增量的方向只与应力状态有关,而与应力增量无关,所以它的方向可由应力状态事先确定。
传统塑性势假设数学上表现为[Ap]中各行元素成比例及[Ap]的秩为1,物理上表现为存在一个势函数, 且塑性应变增量方向与应力具有唯一性。
(2)关联流动法则假设,假设屈服面与塑性势面相同。
无论在德鲁克塑性公设提出之后还是之前, 经典塑性力学中都一直引用这条假设。
对于稳定材料在每一应力循环中外载所作的附加应力功为非负,即有(4)式(4)本是用来判断材料稳定性的,而并非是普遍的客观规律。
然而有人错误地认为德鲁克公设可依据热力学导出, 即应力循环中弹性功为零, 塑性功必为非负,因而式(4)成立。
按功的定义,应力循环中,外载所作的真实功应为(5)式(5)表明,应力循环中只存在塑性功, 并按热力学定律必为非负。
由式(5)还可看出, 真实功与起点应力无关。
由此也说明附加应力功并非真实功, 它只能理解为应力循环中外载所作的真实功与起点应力所作的虚功之差(见下图) 。
加工原理的名词解释在制造和加工领域中,加工原理是指用特定的方法和工艺将原材料转化为具有特定形状、尺寸和性能的成品的一套基本规律和操作步骤。
加工原理是制造工艺的核心,它涵盖了材料的物理、化学性质以及加工工艺的知识和技术。
一、材料性能材料的性能对加工原理起着重要的影响。
材料的性质包括力学性能(如强度、韧性、硬度等)、物理性能(如热导率、电导率、热膨胀系数等)以及化学性能(如耐腐蚀性、耐磨性等)。
在进行加工过程中,了解材料的性能有助于选择合适的加工方法和工艺参数。
二、塑性加工原理塑性加工是利用材料的可塑性将原材料制成所需形状的加工方法。
常见的塑性加工包括挤压、拉伸、压力成形等。
塑性加工的基本原理是在材料受到外界作用下,其原子和分子发生位移和重组,从而改变材料的形状。
通过控制温度、应力和变形速度等因素,可以实现对材料的形状和结构的精确控制。
三、断裂机制及加工原理断裂机制是材料在受力作用下发生断裂的基本原理。
断裂可分为塑性断裂和脆性断裂两种类型。
塑性断裂发生在韧性材料中,其断裂面上往往伴有显著的塑性变形。
脆性断裂则发生在脆性材料中,断裂面光滑而缺乏变形。
了解断裂机制对于预防和控制材料断裂具有重要意义,可以通过调整加工参数,提高材料的耐断裂性能。
四、热加工原理热加工是指在材料加工过程中加热原材料,通过高温下的变形使材料产生塑性变形,进而得到所需形状的加工方法。
常见的热加工方法包括锻造、热轧、热挤压等。
热加工利用材料在高温下具有较高的塑性,可以大幅度改变材料的形状和结构,并且可以提高材料的综合性能。
五、冷加工原理冷加工是指在常温下对原材料进行塑性变形的加工方法。
常见的冷加工方法包括拉拔、冷轧、冷挤压等。
冷加工可以在不改变材料性能的情况下,快速、高效地加工成品。
冷加工过程需要考虑材料的冷硬性,在选择加工方法时需要注意材料的形变能力和表面质量要求。
六、表面处理原理表面处理是为了提高材料的性能、改善材料表面质量和延长使用寿命的加工方法。
生活中塑性成型原理的应用1. 引言•塑性成型是一种常见的加工工艺,广泛应用于生活中的各个领域。
•塑性成型原理是通过施加力量使材料发生变形,从而得到所需形状的一种加工方法。
•本文将介绍生活中塑性成型原理的几个应用案例。
2. 塑料制品加工•塑料制品加工是塑性成型最常见的应用之一。
•塑料制品可以通过注塑、挤塑、吹塑等工艺进行成型。
•注塑是将熔融的塑料通过高压射向模具中,然后在冷却后取出成型。
•挤塑是将熔融的塑料通过模具挤出,形成所需形状。
•吹塑是将熔融的塑料注入到空气膨胀的模具中,通过气压使塑料膨胀成所需形状。
•这些塑料制品广泛应用于日常生活中,例如家电、玩具、日用品等。
3. 金属加工•塑性成型在金属加工中也有着重要的应用。
•金属材料可以通过锻造、压延等工艺进行塑性成型。
•锻造是将金属材料加热至一定温度后,施加力量使其发生塑性变形。
•锻造可以制备各种金属零件,例如汽车发动机曲轴、工业机械零件等。
•压延是将金属材料通过辊轧等方式使之发生塑性变形。
•压延广泛应用于金属板材的加工,例如汽车车身板、铝合金门窗等。
4. 玻璃加工•塑性成型在玻璃加工中也起到重要的作用。
•热玻璃成型是一种常见的玻璃加工方法。
•热玻璃成型是将玻璃加热至一定温度后进行塑性变形。
•通过在模具中施加压力,使玻璃变形成所需形状。
•热玻璃成型广泛应用于玻璃器皿、灯饰等制品的生产中。
5. 橡胶制品加工•橡胶制品是另一个常见的塑性成型应用领域。
•橡胶材料可以通过压缩成型、挤出成型等工艺进行加工。
•压缩成型是将橡胶材料放置在模具中,施加压力使其发生压缩变形。
•挤出成型是将熔融的橡胶材料挤出模具,形成所需形状。
•这些橡胶制品广泛应用于汽车、家具、医疗器械等领域。
6. 其他应用•塑性成型在生活中还有许多其他应用。
•例如,面团的搓揉、拉伸过程就是一种塑性变形,通过搓揉和拉伸,面团可以变得更加柔软和有弹性。
•塑料瓶的压缩也是一种塑性变形,通过施加力量可以将塑料瓶压缩成较小体积,方便储存和回收利用。
塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。
塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。
1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。
塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。
塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。
2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。
在塑性成形过程中,材料会发生塑性变形,使其产生应变。
应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。
3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。
材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。
材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。
4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。
常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。
不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。
5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。
工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。
在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。
塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。
因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。
塑性加工原理范文塑性加工的原理主要包括塑性变形、变形温度和变形速度三个方面。
塑性变形指的是材料在受外力作用下,经过变形过程,形状和结构会发生可逆或不可逆的改变。
塑性变形的过程主要通过材料的晶格结构发生改变来实现,其中包括滑移、扩散、回复和再结晶等过程。
滑移是指晶格平面沿特定方向发生滑动,使晶体发生塑性变形。
扩散是指原子在应力场作用下,从高浓度处向低浓度处扩散,以减小晶界面的能量而发生位错迁移。
回复是指材料在变形后恢复到初始结构的一种自发性过程。
再结晶是指材料在变形后,由于局部过热或应力作用,形成新的完整晶粒。
变形温度是塑性加工过程中的一个重要参数。
通常情况下,提高温度能够降低材料的屈服强度和粘滞阻力,从而降低塑性变形所需的应力。
同时,适当的变形温度还能够促进材料微观结构的变化,使得变形更加均匀和稳定。
但是,过高的温度会导致材料软化或熔化,使得变形困难或影响材料的性能。
因此,在塑性加工过程中,需要控制好变形温度,以保证材料能够得到合适的塑性变形。
变形速度也是塑性加工过程中的一个重要参数。
通常情况下,增加变形速度会使得材料的塑性变形能力增强,即流变应力减小,从而实现更大的变形。
这是由于变形速度的增加会加速位错的运动和滑移,减小位错的沉积,从而提高材料的塑性。
然而,过高的变形速度也会导致材料的应力集中,从而产生裂纹和缺陷,影响材料的性能和加工质量。
因此,在塑性加工过程中,需要根据材料的性质和工艺要求,选择适当的变形速度。
除了上述三个方面的原理外,塑性加工还需要考虑材料的切削性能、有效应力和变形一致性等因素。
材料的切削性能是指材料在塑性加工中的剪切切削力和材料的切削速率之间的关系。
有效应力是指材料在塑性加工过程中实际承受的应力,它受到材料的抗拉强度、屈服强度和塑性变形能力的制约。
变形一致性是指材料在不同方向上的塑性变形能力和变形均匀性的一致性。
综上所述,塑性加工原理涉及材料的塑性变形、变形温度和变形速度等方面的控制和调节,需要根据不同的材料和加工要求,合理地选择工艺参数和加工方法,以实现材料的塑性加工。
金属塑性加工原理
金属塑性加工原理是指在适当的工艺条件下,通过施加外力使金属材料发生塑性变形的过程。
金属塑性加工原理的基础是金属的塑性特性,即金属材料在受力作用下能够发生可逆的形状变化。
金属塑性加工原理涉及到金属材料的结晶学、力学性能和变形机制等方面的知识。
在金属塑性加工中,通过外力的作用,原材料的形状和尺寸可发生变化,实现所需的加工目标。
金属塑性加工原理主要可以归纳为以下几个方面:
1. 金属材料的结晶学:金属材料由多个晶粒组成,晶粒内部有晶界,而晶界是塑性变形的主要路径。
在金属的塑性加工过程中,晶粒的滑移和再结晶是主要的塑性变形机制。
2. 应力和变形:金属在受力作用下,原子间的键合力会发生改变,使得晶体发生滑移。
滑移可以使晶体的形状发生变化,从而完成金属的塑性加工。
在金属的塑性加工过程中,需要合理控制应力和变形,以使材料达到所需的形状和尺寸。
3. 材料的加工硬化:金属经过塑性变形后,晶粒内部会发生位错的堆积,使材料的晶界和晶内的位错密度增加,从而增加材料的硬度和强度。
这种加工硬化现象可以通过热处理来消除或减轻。
4. 金属材料的可塑性和加工性:金属材料的可塑性是指金属在
塑性变形过程中的变形能力。
不同种类的金属材料具有不同的可塑性和加工性能,需要根据实际情况选择合适的金属材料进行塑性加工。
综上所述,金属塑性加工原理是通过施加外力使金属材料发生塑性变形,实现所需形状和尺寸的改变。
金属材料的结晶学、力学性能、变形机制和加工硬化等方面的知识对于金属塑性加工具有重要意义。
在实际加工过程中,需要综合考虑材料的可塑性和加工性能,以确保加工过程的稳定性和质量。
塑性成形重要知识点总结塑性成形是一种通过应变作用将金属材料变形为所需形状的加工方法,也是金属加工领域中的一种重要工艺。
以下是塑性成形的重要知识点总结。
1.塑性成形的原理塑性成形是通过施加外力使金属材料发生塑性变形,使其形状和尺寸发生改变。
塑性成形的原理包括应力与应变关系、材料的流动规律和力学模型等。
2.塑性成形的分类塑性成形可以根据加工过程的不同进行分类,主要包括拉伸、压缩、挤压、弯曲、冲压等。
不同的成形方法适用于不同的材料和形状要求。
3.塑性成形的设备塑性成形通常需要使用专门的设备进行加工,包括拉伸机、压力机、挤压机、弯曲机、冲床等。
这些设备提供必要的力量和变形条件,使金属材料发生塑性变形。
4.金属材料的选择不同的金属材料具有不同的塑性特性,因此在塑性成形中需要根据不同的应用需求选择合适的材料。
常用的金属材料包括钢、铝、铜、镁等。
5.塑性成形的加工方法塑性成形的加工方法非常多样,包括冲压、拉伸、挤压、压铸、锻造等。
不同的加工方法适用于不同的材料和形状要求,可以实现复杂的金属成形。
6.塑性成形的工艺参数塑性成形的工艺参数对成形质量和效率具有重要影响。
常见的工艺参数包括温度、应变速率、应力等。
合理的工艺参数可以提高成形质量和生产效率。
7.塑性成形的变形行为塑性成形过程中金属材料的变形行为是研究的重点之一、金属材料的变形行为包括弹性变形、塑性变形和弹变回复等,通常通过应力-应变曲线来描述。
8.塑性成形的缺陷与控制塑性成形过程中可能发生一些缺陷,如裂纹、皱纹、细化等。
为了控制这些缺陷,需要采取合适的工艺和工艺措施,如加热、模具设计优化等。
9.塑性成形的优点与局限塑性成形具有成本低、加工效率高、灵活性好等优点,可以制造出复杂的金属零件。
然而,塑性成形也存在一些局限性,如对材料性能有一定要求、成形限制等。
10.塑性成形的应用领域塑性成形广泛应用于各个领域,如汽车制造、航空航天、电子、家电等。
不仅可以生产大批量的零部件,还可以满足不同产品的形状和性能要求。
塑性成形原理塑性成形是指通过外力作用下,金属材料经过塑性变形,改变其外形和尺寸的加工方法。
在工程制造中,塑性成形是一种常用的加工工艺,可以用于生产各种各样的零部件和产品。
塑性成形原理是塑性加工的基础,了解和掌握塑性成形原理对于工程技术人员来说至关重要。
首先,塑性成形原理的基础是金属材料的塑性变形特性。
金属材料在外力作用下会发生塑性变形,这是因为金属材料的内部结构存在晶粒和晶界,晶粒内部存在位错。
当外力作用到金属材料上时,位错会发生滑移和交错,从而引起晶粒的形变,最终导致金属材料整体的塑性变形。
因此,了解金属材料的晶体结构和塑性变形机制是理解塑性成形原理的关键。
其次,塑性成形原理涉及到金属材料的应力和应变关系。
在塑性成形过程中,金属材料会受到外力的作用,从而产生应力。
当应力超过金属材料的屈服强度时,金属材料就会发生塑性变形。
而金属材料的应变则是指金属材料在外力作用下的变形程度,通常用应变曲线来描述金属材料的应力和应变关系。
通过研究金属材料的应力和应变关系,可以确定金属材料的塑性变形特性,为塑性成形工艺的设计和优化提供依据。
另外,塑性成形原理还包括金属材料的流变行为。
金属材料在塑性成形过程中会发生流变,即金属材料的形状和尺寸会发生变化。
了解金属材料的流变行为可以帮助工程技术人员选择合适的成形工艺和工艺参数,从而实现对金属材料的精确成形。
总的来说,塑性成形原理是塑性加工的基础,它涉及金属材料的塑性变形特性、应力和应变关系以及流变行为。
掌握塑性成形原理可以帮助工程技术人员更好地理解金属材料的加工特性,指导和优化塑性成形工艺,提高产品的质量和生产效率。
因此,对于从事工程制造和金属加工的人员来说,深入学习和掌握塑性成形原理是非常重要的。