第二章控制系统的数学模型
- 格式:ppt
- 大小:633.50 KB
- 文档页数:23
第二章控制系统的数学模型§2.1引言●数学模型(1)描述系统输入、输出变量及内部各变量关系的数学表达式。
I—O—内部变量(2)系统中各物理量之间相互作用的关系及各自的变化规律用数学形式表达出来。
(3)是舍弃了各种事物的具体特点而抽象出它们的共同性质(即运动)来加以研究的工具。
●控制理论研究的问题是:(1)一个给定的控制系统,它的运动有何性质和特性—分析* 运动:泛指一切物理量随时间的变化(2)怎样设计一个控制系统,使其运动具有给定的性质和特性—综合和设计●工程角度上:控制理论要解决的问题(进一步解释)(1)不满足于求解方程c(t)=f(r(t) )—数学课程已有(2)提出更深入的问题a.这些曲线有何共同性质;b.系统参数值波动对曲线有何影响?c.如何修改参数甚至结构才能改进这些曲线,使之满足工程要求。
—建立控制系统的数学模型,也是研究和解决这些问题的第一步,故建立描述控制系统运动的数学模型是控制理论的基础。
数学模型的形式不只一种:它们各有特长和最适合的场合;它们彼此之间也有紧密的联系;各种数学描述方法的共同基础是微分方程;一元高次微分方程多元一次微分方程(状态方程)Laplace变换为工具——传函传函阵§ 2.2 基本数学模型例 用数学模型表示下图的RC 无源网络给定r u 为输入量,c u 为输出量解:由克希霍夫定律 ⎰+⋅=idt i R u C r 1 r c c u u dtdu RC =+ ⎰=idt u C c 1 令T RC =(时间参数),则微分方程为:r c c u u dtdu T =+ 线性定常系统在初始条件为零时,传递函数为:£{c(t)}/£{r(t)})()()(s U s U s U s T r c c =+⋅⋅ 1.1)(/)()(+==→s T s U s U s G r c 其形式和参数由系统的结构和参数决定,与r(t)无关。
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。
第二章 控制系统的数学模型2-1 控制系统的时域模型一、建立系统微分方程的基本步骤(P23,第二自然段):⑴ 分析系统工作原理、各变量之间的关系,确立系统的输入变量和输出变量; ⑵ 依据支配系统工作的基本规律,逐个列写出各元件的微分方程;⑶ 消去中间变量,列写出只含有输入和输出变量以及它们的各阶导数的微分方程; ⑷ 将方程写成规范形式。
例2-1:系统输入i u ,输出o u ;从输入到输出顺序列写各元件方程, td id Lu L =,i R u R =,⎰=t id C u o 1,及o R L i u u u u ++=利用输出电压与回路电流的关系消去中间变量,t d u d C i o =,22t d u d C t d id o =;o o o i u t d u d RC td u d LC u ++=22 写成规范的微分方程(标准形式):i o o o u u td u d RC t d u d LC =++2;或 i o u u p T p T =++)1(221,其中LC T =1,RC T =2,t d dp =。
“系统初始条件均为零”是指在零时刻以前系统的输入和输出及他们的各阶导数均为零。
在复数域,复变量s 对应微分算子,而s /1对应积分运算。
“输出对输入的响应” 是指,初始条件为零时,系统输出的运动情况。
因此,可以直接列写控制系统在复数域的方程。
就本例而言有:)()(s sI L s U L =,)()(s I R s U R =,)(1)(s I sC s U o =,及 )()()()(s U s U s U s U o R L i ++=; 消去中间变量)()(s U s C s I o ⋅=,得()()1(221U s U s T s T i o =++例2-2:系统输入F ,输出x ;力平衡方程:)()()()(2s X K s f s F s X ms +-=;整理得,)()()(2s F s X K s f ms =++。
第二章控制系统的数学模型本章目录2.1 传递函数2.2 传递函数的说明2.3 非线性数学模型的线性化2.4 典型环节的传递函数数学模型2.5 用方块图表示的模型2.6 信号流程图与梅逊公式2.7* 数学模型的MATLAB描述小结本章简介系统是指相互联系又相互作用着的对象之间的有机组合。
许多控制系统,不管它们是机械的、电气的、热力的、液压的,还是经济学的、生物学的等等,都可以用微分方程加以描述。
如果对这些微分方程求解,就可以获得控制系统对输入量(或称作用函数)的响应。
系统的微分方程,可以通过支配着具体系统的物理学定律,例如机械系统中的牛顿定律,电系统中的克希霍夫定律等获得。
为了设计(或者分析)一个控制系统,首先需要建立它的数学模型,即描述这一系统运动规律的数学表达式。
有三种比较常用的描述方法:一种是把系统的输出量与输入量之间的关系用数学方式表达出来,称之为输入--输出描述,或外部描述,例如微分方程式、传递函数和差分方程。
第二种不仅可以描述系统的输入、输出间关系,而且还可以描述系统的内部特性,称之为状态变量描述,或内部描述,它特别适用于多输入、多输出系统,也适用于时变系统、非线性系统和随机控制系统。
另一种方式是用比较直观的方块图模型来进行描述。
同一控制系统的数学模型可以表示为不同的形式,需要根据不同情况对这些模型进行取舍,以利于对控制系统进行有效的分析。
本章所讨论的数学模型以传递函数和方块图为主。
2.1 传递函数在控制理论中,为了描述线性定常系统的输入-输出关系,最常用的函数是所谓的传递函数。
传递函数的概念只适用于线性定常系统,在某些特定条件下也可以扩充到一定的非线性系统中去。
线性定常系统的传递函数,定义初始条件为零时,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
设有一线性定常系统,它的微分方程是(2-1)式中y是系统的输出量,x是系统的输入量。
初始条件为零时,对方程(2-1)两端进行拉普拉斯变换,就可以得到该系统的传递函数为:(2-2)传递函数是一种以系统参数表示的线性定常系统的输入量与输出量之间的关系式,它表达了系统本身的特性,而与输入量无关。