北京市2011中考数学题与评分标准
- 格式:doc
- 大小:1.10 MB
- 文档页数:13
北京市2011年中考数学试卷—解析版一、选择题(共8小题,每小题4分,满分32分)1、(2011•北京)﹣的绝对值是( )A 、﹣B 、C 、﹣D 、考点:绝对值。
专题:计算题。
分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D .点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2、(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A 、66.6×107B 、0.666×108C 、6.66×108D 、6.66×107考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a 有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C .点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•北京)下列图形中,即是中心对称又是轴对称图形的是( )A 、等边三角形B 、平行四边形C 、梯形D 、矩形考点:中心对称图形;轴对称图形。
分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D 选项既为中心对称图形又是轴对称图形解答:解:A 、是轴对称图形,不是中心对称图形.故本选项错误;B 、是不是轴对称图形,是中心对称图形.故本选项错误;C 、是轴对称图形,不是中心对称图形.故本选项错误;D 、既是轴对称图形,又是中心对称图形.故本选项正确.故选D .点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4、(2011•北京)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AO CO的值为( )A 、B 、C 、D 、考点:相似三角形的判定与性质;梯形。
(2012年1月最新最细)2011全国中考真题解析120考点汇编正方形的性质与判定一、选择题1.(2011天津,5,3分)如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A、15°B、30°C、45°D、60°考点:翻折变换(折叠问题);正方形的性质。
专题:计算题。
分析:利用翻折变换的不变量,可以得到∠EBF为直角的一半.解答:解:∵将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,∴∠ABE=∠DBD=∠DBF=∠FBC,∴∠EBF=12∠ABC=45°,故选C.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.2.(2011山东济南,15,3分)如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是()A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1考点:解直角三角形;三角形的面积。
分析:设直角三角形的三边分别为a、b、c,分别表示出三角形的面积比较即可.解答:解:设三角形的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∴S1=S2=S3=12ab.故选A.点评:本题考查了解直角三角形及三角形的面积的知识,解题的关键是了解三角形的三边与正方形的边长的关系.[来源:学科网]3.(2011泰安,17,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质。
2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。
2011年北京市中考数学模拟试卷2011年北京市中考数学模拟试卷一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()8.(4分)(2009•临沂)矩形ABCD 中,AD=8cm ,AB=6cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( ).CD .二、填空题(共4小题,每小题4分,满分16分) 9.(4分)(2013•昌平区二模)若分式的值为0,则x 的值为 _________ .10.(4分)(2012•开平区二模)如图,点A 、B 、C 是半径为6的⊙O 上的点,∠B=30°,则的长为 _________ .11.(4分)(2010•西城区一模)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,若AD=3,DB=5,DE=1.2,则BC= _________ .12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=_________.三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_________天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=_________;(2)已知a﹣b=2,ab=3,求a4+b4的值.23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=_________;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.2011年北京市中考数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.=;4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()=AB8.(4分)(2009•临沂)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的().C D.二、填空题(共4小题,每小题4分,满分16分)9.(4分)(2013•昌平区二模)若分式的值为0,则x的值为﹣2.解:若分式10.(4分)(2012•开平区二模)如图,点A、B、C是半径为6的⊙O上的点,∠B=30°,则的长为2π.∴l=.11.(4分)(2010•西城区一模)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC= 3.2.∴12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.(∠BD=∠A=α∠.=三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)×﹣,﹣,.14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.,对不等式;不等式的解集为:15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.(故答案为17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.依题意,得18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.的坐标为)中,由)在双曲线上,可得的图象上,可得的解析式为的坐标为)中,,∴∴的解析式为19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.DM=CF=tanC==20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是2008年,增加了28天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为30%;请你补全右边的扇形统计图.×个城市,所占的百分比为:22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=34;(2)已知a﹣b=2,ab=3,求a4+b4的值.)∵23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由..解析式为:,时,∴m时,∴m24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=8;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)∴ACAP=AB﹣(AP=,PB=﹣∴解得.MQ(﹣(或y=25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.)依题意得OA=3OB=2AB=5,得:∴OD=,)∴∴﹣x+m∴∴﹣)×,x++得:y=)x+中,()GH=∵OG∵×d=××d=AB×参与本试卷答题和审题的老师有:自由人;HJJ;星期八;hbxglhl;lf2-9;Linaliu;wenming;733599;MMCH;110397;CJX;开心;ln_86;nhx600;zhjh;疯跑的蜗牛;xiu;117173;心若在;lanchong;王岑;zcx;gsls;lbz;jingjing;Liuzhx(排名不分先后)菁优网2014年3月16日。
A OBCD ABC E D数 学 试 卷学校 姓名 准考证号 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.- 34的绝对值是( )A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是( )A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 195.北京今年6月某日部分区县的高气温如下表:区县 大兴 通州 平谷 顺义 怀柔 门头沟 延庆 昌平 密云 房山 最高气温32323032303229323032则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是 AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示 y 与x 的函数关系图象大致是( )二、填空题(本题共16分,每小题4分) 9.若分式x ―8x的值为0,则x 的值等于________. A .B .C .D . OOOOx x x x y y y y 1 1 1 11 1 1 12 2 2 2A CB DFE O y xA11 11.若右图是某几何体的表面展开图,则这个几何体是__________. 12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a ij =a 21=1.按此规定,a 13=_____;表中的25个数中,共有_____个1;计算:a 11·a i 1+a 12·a i 2+a 13·a i 3+a 14·a i 4+a 15·a i 5的值为________. 三、解答题(本题共30分,每小题5分)13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25 a 31 a 32 a 33 a 34 a 35 a 41 a 42 a 43 a 44 a 45 a 51 a 52 a 53 a 54 a 55A B C E DAOBF CDE路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分) 19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 12∠CAB .(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin ∠CBF =55,求BC 和BF 的长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;北京市2001~2010年 私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图年增长率/% 轿车拥有量/万辆年份 年份2006 2006 2007 2008 2009 20102007 2008 2009 201050 100 150 200250 300 121 146 217 276 22211925275 25 30 10 15 20A B D CE F 图3 同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L ) 小于1.6 1.6 1.8 大于1.8 数量(辆)29753115如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于____________.参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为 三边长的三角形的面积等于_______.五、解答题(本题共22分)23.(7分)在平面直角坐标系xOy 中,二次函数y =mx 2+(m ―3)x ―3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+(m ―3)x ―3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.BBCADOADCE O图2图1O yx3 5 -5 -3E ADF O B x y(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.25.(7分)如图,在平面直角坐标系xOy 中,我把由两条射线AE 、BF 和以AB 为直径的半圆所组成的图形叫作图形C (注:不含AB 线段).已知A (-1,0),B (1,0),AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.(1)求两条射线AE 、BF 所在直线的距离;(2)当一次函数y =x +b 的图象与图形C 恰好只有一个公共点时,写出b 的取值范围; 当一次函数y =x +b 的图象与图形C 恰好只有两个公共点时,写出b 的取值范围;(3)已知□AMPQ (四个顶点A 、M 、P 、Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M 的横坐标x 的取值范围.B BA D A D C C EFE G FA BC DE GF 图1图2图3一、选择题题号 1 2 3 4 5 6 7 8 答案 D C DB AB AB二、填空题题号 9 101112 答案 8()25-a a圆柱 015 1三、解答题解:()1012cos30272π2-⎛⎫-︒++- ⎪⎝⎭3223312=-⨯++23331=-++ 233=+.解:去括号,得4456x x ->-. 移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 解:()()()422a a b a b a b +-+-()22244a ab a b =+--244ab b =+. ∵2220a ab b ++=,∴0a b +=. ∴原式()40b a b =+=.证明:∵BE DF ,∥ ∴ABE D ∠=∠. 在ABE △和FDC △中,EFA B ED A B F DA F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=.∴点A 的坐标为()12-,.∵点A 的反比例函数k y x =的图象上, ∴2k =-.∴反比例函数的解析式为2y x =-.⑵ 点P 的坐标为()20-,或()04,.解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x =⨯+. 解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题解:∵90ACB DE BC ∠=︒,,⊥ ∴AC DE ∥.又∵CE AD ,∥∴四边形ACED 是平行四边形. ∴2DE AC ==.在Rt CDE △中,由勾股定理得2223CD CE DE =-=.∵D 是BC 的中点, 1O1-1xyAAC EBD∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+. ⑴ 证明:连结AE .∵AB 是O 的直径, ∴90AEB ∠=︒. ∴1290∠+∠=︒. ∵AB AC =,∴112CAB∠=∠. ∵12CBF CAB ∠=∠,∴1CBF ∠=∠. ∴290CBF ∠+∠=︒. 即90ABF ∠=︒. ∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G . ∵5sin 15CBF CBF ∠=∠=∠,,∴5sin 15∠=.∵905AEB AB ∠=︒=,, ∴sin 15BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,, 12G A DCFB E O∴255sin 2cos 255∠=∠=,.在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥, ∴AGC ABF △△.∴GC AG BF AB =. ∴203GC AB BF AG ⋅==. 解:⑴()146119%⨯+173.74= 174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆. ⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △.⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点, ∴令0y =,即()2330mx m x +--=.解得1231x x m =-=,.又∵点A 在点B 左侧且0m >, 174轿车拥有车量(万辆)北京市2006-2010年私人轿车拥有量统计图年份2762171461215010015020025030020062007200820092010APEFCDB⑵ 由⑴可知点B 的坐标为30m⎛⎫ ⎪⎝⎭,. ∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒,∴33m =. ∴1m =.⑶ 由⑵得,二次函数解析式为223y x x =--. 依题意并结合图象可知,一次函数的图象与二次函数的 图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和()23-,.将交点坐标分别代入一次函数解析式y kx b =+中, 得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥. ∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.1OB CA yxPMNx yA CB O1DEFCBA图1A D⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2). ∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =, ∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,. ∴ECG △是等边三角形. ∴EG CG =, ① 60GEC EGC ∠=∠=︒. ∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =. ∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒.∴180602BGDBDG ︒-∠∠==︒.解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒.DAO B Fxy∴BD AD ⊥.在Rt DOB △中,由勾股定理得222BD OD OB =+=.∵AE BF ,∥∴两条射线AE 、BF 所在直线的距离为2.⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b 的取值是2b =或11b -<<; ⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列, ∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在AD 上,且不与点A D 、重 合.∴02PQ <<.∵AM PQ ∥且AM PQ =, ∴02AM <<. ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图 3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ③当点M 在DB 上时,设DB 的中点为R ,则OR BF ∥. 当点M 在DR (不包括点R )上时,如图4.过点M 作OR 的垂线交DB 于点Q ,垂足为点S ,可得S 是MQ 的中点.M Q P y xFB O A ED 图2My xFB O A ED图3图4PQ S R MD EA OBF xy连结AS并延长交直线BF于点P.∵O为AB的中点,可证S为AP的中点.∴四边形AMPQ为满足题意的平行四边形.∴22x<≤.2)当点M在RB上时,如图5.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.④当点M的射线BF(不包括点B)上时,如图6.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是21x-<<-或22x<≤.RP1P2P3图5DEAO BFxyMMyxFBOAED图6P3P2P1。
(2012年1月最新最细)2011全国中考真题解析120考点汇编中位线一、选择题1.(2011•湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是()A、1cmB、2cmC、3cmD、4cm考点:三角形中位线定理。
专题:计算题。
分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC.解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm,∴EF是△ABC的中位线∴BC=2EF=2×2=4cm.故选D.点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.34B.43C.35D.45考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理.专题:几何图形问题.分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC= 4 3故选B.点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键.3.(2011•贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A、B、C、D、考点:梯形中位线定理;三角形中位线定理。
分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比.解答:解:过点D作DQ⊥AB,交EF于一点W,∵EF是梯形的中位线,∴EF∥CD∥AB,DW=WQ,∴AM=CM,BN=DN.∴EM=CD,NF=CD.∴EM=NF,∵AB=3CD,设CD=x,∴AB=3x,EF=2x,∴MN=EF﹣(EM+FN)=x,∴S△AME+S△BFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x•QW,S梯形ABFE=(EF+AB)×WQ=QW,S△DOC+S△OMN=CD×DW=xQW,S梯形FECD=(EF+CD)×DW=xQW,∴梯形ABCD面积=xQW+xQW=4xQW,图中阴影部分的面积=x•QW+xQW=xQW,∴图中阴影部分的面积是梯形ABCD面积的:=.故选:C.点评:此题考查了三角形中位线定理、平行线等分线段定理和梯形的中位线定理和梯形面积与三角形面积求法,解答时要将三个定理联合使用,以及得出各部分对应关系是解决问题的关键.4.(2011•泰州,8,3分)如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A、平行四边形B、矩形C、等腰梯形D、直角梯形考点:三角形中位线定理。
数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。
考试时间120分钟,满分150分。
考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。
2011-2023北京中考真题数学汇编反比例函数7.(2014北京中考真题)如图,在平面直角坐标系(0)ky k x=≠,使它的图象与正方形9.(2011北京中考真题)如图,在平面直角坐标系图象的一个交点为A(﹣(1)求反比例函数y=(2)若P是坐标轴上一点,且满足10.(2018北京中考真题)在平面直角坐标系线14l y x b=+∶与图象G(1)求k的值;∴由上述结果可知,分母不能为,故【点睛】本题考查反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系.9.(1)y=﹣2x;(2)(【详解】解:(1)∵点∴n=﹣2×(﹣1)=2∴点A的坐标为(﹣1∵点A在反比例函数的图象上.∴k=﹣210.(1)4;(2)①3个.【详解】分析:(1)根据点(2)①当1b =-时,根据整点的概念,直接写出区域②分a .当直线过(4,0时四种情况进行讨论即可详解:(1)解:∵点A (∴14k=,∴4k =.(2)①3个.(1,0),(②a .当直线过(4,0)时:b .当直线过(5,0)时:c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.11.(1)1(0)y x x =>不是有界函数,y=x+1(-4<x ≤2)是有界函数,边界值是3;(2)-1<b≤3;(3)0≤m≤14或34≤m≤1.【分析】(1)分析题意,结合已知中有界函数的定义可进行判断;(2)根据一次函数的性质可得1y x =-+的增加性,再结合自变量的取值范围和题意可得此不等式组可得b 的取值范围;(3)要分情况讨论,易判断1m >不符合题意,故1m;结合已知函数解析式可得函数过点以此求得其平移后的点坐标,进而可得34≤1-m≤1或-1≤-m≤34,由此即可求得m 【详解】解:(1)结合已知根据有界函数的定义可知1(0)y x x=>不是有界函数,数,边界值是3;(2)1y x =-+Q 中10-<,y 随x 的增大而减小,∴当x a =时,12=-+=y a ,故1a =-.当x b =时,1=-+y b ,根据题意可得:212b b a--+<⎧⎨>⎩ ,31b ∴>- ;(3)若1m >,函数向下平移m 个单位后,0x =时,函数值小于1-,此时函数的边界值不符,故1m.当=1x -时,1y =,即过(1,1)-,当0x =时,0min y =,即过(0,0),将(1,1)-,(0,0)都向下平移m 个单位,得到(1,1)m --,(0,)m -,根据题意可得:1m t -=或m t -=,∴34≤1-m≤1或-1≤-m≤34,0≤m≤14或34≤m≤1.【点睛】本题考查了二次函数综合题,解题的关键是结合新定义,弄清函数边界值的定义,同时要熟悉平移变换的性质.。
2006-2011北京中考真题分类整理(解答题)1.计算:11(2006)2-⎛⎫--+ ⎪⎝⎭11(1)2cos45()4π--︒-︒+计算:1120096-⎛⎫-+--⎪⎝⎭计算:⎪⎭⎫⎝⎛31-1-20100+|-43|-tan60︒。
112sin45(2)3-⎛⎫+-π- ⎪⎝⎭计算:101()2cos30(22--︒+-π)。
2.解不等式组315260.xx-<⎧⎨+>⎩,解方程:2410x x+-=计算:22111xx x---解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.解分式方程:6122xx x+=-+解分式方程423-x-2-xx=21。
1 2 31-2-3-解分式方程12211x x x +=-+. 解不等式:4(1)56x x ->-。
3.已知:如图,A B E D ∥,点F ,点C 在A D 上,AB D E =,AF D C =.求证:B C E F =.已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA =OC ,OB =OD .求证:AB =CD已知:如图,C 为B E 上一点,点A D ,分别在B E 两侧.A B E D ∥,A B C E =,B C E D =. 求证:A C C D =.已知:如图,在△ABC 中,∠ACB=90,C D AB ⊥于点D,点E 在 AC 上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB=FC已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC 。
求证:∠ACE =∠DBF 。
BACE DB如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,A F ∠=∠,A B F D =。
求证:A E F C =。
4.已知:如图,在梯形A B C D 中,A D B C ∥,90ABC ∠= ,45C ∠=,B ECD ⊥于点E ,1AD =,CD =.求:B E 的长.如图,在梯形ABCD 中,AD ∥BC ,AB = DC = AD ,∠C=60º,AE ⊥BD 于点E ,AE=1,求梯形ABCD 的高.如图,在梯形A B C D 中,A D B C ∥,AB AC ⊥,45B ∠=,AD =BC =D C 的长.如图,在梯形ABCD 中,AD ∥BC ,∠B=90,∠C=45,AD=1,BC=4,E 为AB 中点,EF ∥DC 交BC 于点F,求EF 的长.已知:如图,在梯形ABCD 中,AD //BC ,AB =DC =AD =2,BC =4。
2011年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.34-的绝对值是A .43-B .43C .34-D .342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将 665 575 306用科学记数法表示(保留三个有效数字)约为A .766.610⨯B .80.66610⨯C .86.6610⨯D .76.6610⨯ 3.下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD=1,BC=3,则AOCO的值为 A .12 B .13 C .14 D .195.北京市今年6月某日部分区县的最高气温如下表:A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球、5个红球和8个黄球,这些球除颜色外,没有任何其他区别.现从这个盒子中随机摸出一个球,摸到红球的概率为A.815B.13C.215D.1157.抛物线265y x x=-+的顶点坐标为A.(3,4)-B.(3,4)C.(3,4)--D.(3,4)-8.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9.若分式8xx-的值为0,则x的值等于.10.分解因式:321025a a a-+=.11.若右图是某几何体的表面展开图,则这个几何体是.12.在右表中,我们把第i行第j列的数记为,i ja(其中i,j都是不大于5的正整数),对于表中的每个数,i ja规定如下:当i≥j时,,1i ja=;当<i j时,,i ja=.例如:当i=2,j=1时,,2,11i ja a==.按此规定,1,3a=_____;表中的25个数中,共有_____个1;计算1,1,11,2,21,3,31,4,41,5,5i i i i ia a a a a a a a a a⋅+⋅+⋅+⋅+⋅的值为_______.三、解答题(本题共30分,每小题5分)13.计算:101()2cos30(2)2π--︒-.14.解不等式:4(1)56x x ->-.15.已知2220a ab b ++=,求代数式 (4)(2)(2)a a b a b a b +-+- 的值.16.如图,点A 、C 、B 、D 在同一条直线上,BE //DF ,A F ∠=∠,AB FD =. 求证:AE FC =.17.如图,在平面直角坐标系xOy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点为A (-1,n ). (1)求反比例函数ky x=的解析式; (2)若P 是坐标轴上一点,且满足P A=OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,CE ∥AD .若AC=2,CE=4,求四边形ACEB的周长.20.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB ∠=∠.(1)求证:直线BF 是⊙O 的切线; (2)若AB=5,sin CBF ∠=BC 和BF 的长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分.请你根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有量是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量.为了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它的碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市...仅排量为1.6L 的这类私人轿车(假设每辆车平均一年行驶1万千米)的碳排放总量约为多少万吨?小明居住小区不同排量的私人轿车的数量统计表22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC BD AD BC +、、的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC BD AD BC +、、的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于 . 参考小伟同学思考问题的方法,解决下列问题: 如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边 长的三角形的面积等于 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,二次函数 2(3)3y mx m x =+-- (0m >)的图象与x 轴交于A 、B 两点(点A 在点B左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC=45°时,求m 的值;(3)已知一次函数 y kx b =+,点(,0)P n 是x 轴上的一个动点.在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2(3)3y mx m x =+--(0m >)的图象于点N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.图1图2图324.在ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中证明CE=CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.25.如图,在平面直角坐标系xOy 中,我们把由两条射线AE 、BF 和以AB 为直径的半圆所组成的图形叫作图形C .已知A (-1,0),B (1,0),AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.(1)求两条射线AE 、BF 所在直线的距离;(2)当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,写出b 的取值范围;当一次函数y x b =+的图象与图形C 恰好只有两个公共点时,写出b 的取值范围; (3)已知AMPQ (四个顶点A 、M 、P 、Q 按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M 的横坐标x 的取值范围.图1图2图3备用图2011年北京市高级中等学校招生考试 数学试卷参考答案一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:101()2cos30(2)2π--︒-=221-=21=3.14.(本小题满分5分)解:去括号,得 4456x x ->-.移项,得 4546x x ->-. 合并,得 2x ->-. 解得 2x <.所以原不等式的解集是 2x <. 15.(本小题满分5分)解: (4)(2)(2)a a b a b a b +-+-=2224(4)a ab a b +--=244ab b +. ∵ 2220a ab b ++=, ∴ 0a b +=. ∴ 原式=4()b a b +=0. 16.(本小题满分5分)证明:∵ BE //DF ,∴ABE D ∠=∠.在△ABE 和△FDC 中, = =ABE D AB FD A F ∠∠⎧⎪=⎨⎪∠∠⎩,,, ∴ △ABE ≌△FD C . ∴ AE =FC .17.(本小题满分5分)解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).分∵ 点A 在反比例函数ky x=的图象上, ∴ 2k =-.∴ 反比例函数的解析式为2y x=-. (2)点P 的坐标为(-2,0)或(0,4)或(0,0).18.(本小题满分5分)解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x=⨯+. 解得 27x =.经检验,27x =是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题(本题共20分,每小题5分)19.(本小题满分5分)解:∵ 90ACB ∠=︒,DE BC ⊥,∴ AC ∥DE . 又∵ CE ∥AD , ∴ 四边形ACED 是平行四边形. ∴ DE=AC=2.在Rt △CDE 中,由勾股定理得CD = ∵ D 是BC 的中点, ∴2BC CD ==在Rt △ABC 中,由勾股定理得AB = ∵ D 是BC 的中点,DE BC ⊥, ∴ EB=EC=4.∴ 四边形ACEB的周长10AC CE EB BA =+++=+20.(本小题满分5分)(1)证明:连结AE .∵ AB 是⊙O 的直径, ∴ 90AEB ∠=︒ . ∴ 1290∠+∠=︒. ∵ AB=AC ,∴ 112CAB ∠=∠.∵ 12CBF CAB ∠=∠,∴ 1CBF ∠=∠. ∴ 290CBF ∠+∠=︒. 即∠ABF = 90°. ∵ AB 是⊙O 的直径, ∴ 直线BF 是⊙O 的切线. (2)解:过点C 作CG ⊥AB 于点G .∵sin CBF ∠=1CBF ∠=∠, ∴sin 1∠=∵ 90AEB ∠=︒,AB=5,∴ BE=sin 1AB ⋅∠∵ AB=AC ,90AEB ∠=︒, ∴2BC BE ==.在Rt △ABE 中,由勾股定理得 AE= ∴sin 2∠=cos 2∠=. 在Rt △CBG 中,可求得 4GC =,2GB =.∴ AG=3. ∵ GC ∥BF , ∴ △AGC ∽△ABF . ∴GC AGBF AB=. ∴ 203GC AB BF AG ⋅==.21.(本小题满分5分)解:(1)146(119%)⨯+=173.74≈174(万辆).所以2008年北京市私人轿车拥 有量约是174万辆.(2)如右图.(3)75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为 372.6万吨.22.(本小题满分5分)解:△BDE 的面积等于 1 .(1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP ∆.(2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于34.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分)解:(1)∵ 点A 、B 是二次函数 2(3)3y mx m x =+--(0m >)的图象与x 轴的交点,∴ 令0y =,即 2(3)3mx m x +--=0.解得 11x =-,23x m=. 又∵ 点A 在点B 左侧且0m >, ∴ 点A 的坐标为(1,0)-. (2)由(1)可知点B 的坐标为(3m,0). ∵ 二次函数的图象与y 轴交于点C ,∴ 点C 的坐标为(0,3)-. ∵ ∠ABC=45°,∴3m =3. ∴ m =1. (3)由(2)得二次函数解析式为223y x x =--. 依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为2-和2, 由此可得交点坐标为(2,5)-和(2,3)-.将交点坐标分别代入一次函数解析式y kx b =+中, 得 25 2 3.k b k b -+=⎧⎨+=-⎩, 解得 2 1k b =-⎧⎨=⎩,.∴ 一次函数的解析式为21y x =-+.24.(本小题满分7分)(1)证明:如图1.∵ AF 平分∠BAD ,∴ ∠BAF=∠DAF .∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,AB ∥CD . ∴ ∠DAF=∠CEF ,∠BAF=∠F .∴ ∠CEF=∠F .∴ CE=CF .(2)∠BDG= 45 °.(3)解:分别连结GB 、GE 、GC (如图2).∵ AB ∥DC ,∠ABC =120°, ∴ ∠ECF =∠ABC =120°. ∵ FG ∥CE 且FG =CE , ∴ 四边形CEGF 是平行四边形. 由(1)得 CE=CF , ∴Y CEGF 是菱形.∴ EG=EC ,∠GCF =∠GCE =12ECF ∠=60°. ∴ △ECG 是等边三角形. ∴ EG=CG , ① ∠GEC =∠EGC =60°.∴ ∠GEC =∠GCF .∴BEG DCG ∠=∠. ② 由AD ∥BC 及AF 平分∠BAD 可得 ∠BAE =∠AEB . ∴ AB =BE .在Y ABCD 中,AB =DC . ∴ BE =DC . ③ 由①②③得 △BEG ≌△DCG . ∴ BG =DG ,∠1=∠2.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒. ∴ 180602BGDBDG ︒-∠∠==︒.25.(本小题满分8分)解:(1)分别连结AD 、DB ,则点D 在直线AE 上,如图1.∵ 点D 在以AB 为直径的半圆上, ∴ ∠ADB =90°. ∴ BD ⊥AD .在Rt △DOB 中,由勾股定理得BD =图1∵AE ∥BF ,∴ 两条射线AE 、BF(2)当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b 的取值范围是11b b =-<<;当一次函数y x b =+的图象与图形C 恰好只有两个公共点时,b.(3)假设存在满足题意的 Y AMPQ ,根据点M 的位置,分以下四种情况讨论: ① 当点M 在射线AE 上时,如图2. ∵ A 、M 、P 、Q 四点按顺时针方向排列, ∴ 直线PQ 必在直线AM 的上方. ∴ P 、Q 两点都在»AD 上,且不与点A 、D 重合. ∴0PQ <. ∵ AM ∥PQ 且AM =PQ , ∴0AM < ∴ 21x -<<-.② 当点M 在»AD (不包括点D )上时,如图3. ∵ A 、M 、P 、Q 四点按顺时针方向排列, ∴ 直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形.③ 当点M 在»DB上时, 设»DB的中点为R ,则OR //BF . i )当点M 在»DR(不包括点R )上时,如图4. 过点M 作OR 的垂线交»DB于点Q , 垂足为点S ,可得S 是MQ 的中点. 连结AS 并延长交直线BF 于点P . ∵ O 为AB 的中点,可证S 为AP 的中点. ∴ 四边形AMPQ 为满足题意的平行四边形. ∴ 0≤x. ii )当点M 在»RB上时,如图5. 直线PQ 必在直线AM 的下方.图2图3图5此时,不存在满足题意的平行四边形.④当点M在射线BF(不包括点B)上时,如图6.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是21x-<<-或0≤x图6。