参数自整定模糊PI控制器设计与仿真
- 格式:pdf
- 大小:754.80 KB
- 文档页数:3
一种模糊-PI双模控制系统的仿真与设计PI 控制作为PID 控制的典型代表,以其算法简单、鲁棒性好及可靠性高,被广泛应用于工业过程控制和运动控制中。
但传统PI 控制适用于建立精确的数学模型的确定性控制系统,而大多数工业过程不同程度地存在非线性、大滞后、参数时变性和模型不确定性,因此普通的PI 控制器难以获得满意的控制效果。
模糊控制不要求被控对象的精确模型且适应性强,能够克服传统PI 控制器的缺点,可以将模糊控制器与PI 控制器结合起来构成复合控制器,模糊-PI 双模控制同时具备PI 控制的稳态性能和模糊控制的动态性能,起到良好的控制效果。
1 模糊-PI 双模控制系统结构模糊-PI 双模控制系统由模糊控制器(FC)和PI 控制器并联组成,并由控制开关进行模式选择,其结构如图1 所示。
其工作原理是当系统偏差较大,落在某个阈值A 以外时,就采用模糊控制以获得良好的动态性能;当系统偏差较小,落在阈值以内时,就采用PI 控制以获得较好的稳态性能。
控制开关的控制规则可以描述为: 2 模糊-PI 双模控制系统的设计2.1 被控对象的选取在控制工程实践中,典型的二阶系统很常见,即便对于许多高阶系统,在一定条件下也可近似作为二阶系统来研究。
广义对象系统的传递函数可近似看为:其中K1、K2 是根据控制对象的变化可以取不同的数值来模拟系统的非线性特征。
2.2 PI 控制器设计为获得较好的稳态控制效果,普遍采用PI 控制,也就是在系统中加入1 个比例放大器和1 个积分器。
通过参数整定得到PI 控制器的参数为Kp=0.5,Ki=8,单位阶跃响应曲线如图2 所示。
2.3 模糊控制器设计2.3.1 确定输入、输出隶数度函数模糊控制器采用二维结构,以偏差e 和偏差变化率ec 作为模糊控制器的输入信号,将模糊控制。
PID控制器设计与参数整定方法综述一、本文概述本文旨在全面综述PID(比例-积分-微分)控制器的设计与参数整定方法。
PID控制器作为一种广泛应用的工业控制策略,其设计的优劣直接影响到控制系统的性能和稳定性。
因此,深入理解并掌握PID控制器的设计原则与参数整定方法,对于提高控制系统的性能具有非常重要的意义。
本文将首先介绍PID控制器的基本原理和组成结构,包括比例、积分和微分三个基本环节的作用和特点。
在此基础上,详细阐述PID控制器设计的一般步骤和方法,包括确定控制目标、选择控制算法、设定PID参数等。
本文还将重点介绍几种常用的PID参数整定方法,如Ziegler-Nichols法、Cohen-Coon法以及基于优化算法的参数整定方法等,并对这些方法的优缺点进行比较分析。
本文将结合具体的应用实例,展示PID控制器设计与参数整定方法在实际工程中的应用效果,以期为读者提供有益的参考和借鉴。
通过本文的阅读,读者将能够全面了解PID控制器的设计与参数整定方法,掌握其在实际应用中的技巧和注意事项,为提高控制系统的性能和稳定性提供有力的支持。
二、PID控制器的基本原理PID(比例-积分-微分)控制器是一种广泛应用于工业控制系统的基本控制策略。
它的基本工作原理是基于系统的误差信号(即期望输出与实际输出之间的差值)来调整系统的控制变量,以实现对系统的有效控制。
PID控制器的核心在于其通过调整比例、积分和微分三个环节的参数,即比例系数Kp、积分系数Ki和微分系数Kd,来优化系统的动态性能和稳态精度。
比例环节(P)根据误差信号的大小成比例地调整控制变量,从而直接减少误差。
积分环节(I)则是对误差信号进行积分,以消除系统的静态误差,提高系统的稳态精度。
微分环节(D)则根据误差信号的变化趋势进行预测,提前调整控制变量,以改善系统的动态性能,抑制过冲和振荡。
PID控制器的这三个环节可以单独使用,也可以组合使用,以满足不同系统的控制需求。
模糊自整定PID控制的仿真分析本文针对于被控对象模型难以建立,参数不易整定的某些被控系统,利用常规PID在工业领域应用成熟,控制精度高的优点,同时结合模糊控制不需要精确建模、鲁棒性强、容错能力强的特点。
在常规PID控制基础之上,利用模糊控制进行模糊推理,实现PID参数的在线自整定。
利用MATLAB对模糊自整定PID进行仿真分析,仿真结果表明,模糊自整定PID,在响应速度、超调量、稳定性都比常规PID有着明显的提高。
标签:模糊控制; PID控制; 参数自整定; 仿真0 引言自PID控制理论诞生已70余年发展历史,它以结构简单、稳定性好、工作可靠、参数调整简单成为现代工业控制的主要理论之一。
但当被控对象的参数以及结构不能完全掌握或难以精确建立数学模型时,系统控制器的结构和参数必须通过工作人员的丰富经验以及现场试参法来进行确定。
模糊控制适用于模型难以建立、非线性、参数高度耦合、高迟滞的系统。
利用模糊理论在参数整定的优势特点,同时充分发挥PID控制器的优良控制作用,将提高对参数难以整定、耦合度高的被控对象的控制精度。
1 模糊自整定PID 控制器的整体设计1.1 PID 控制原理简介由比例环节、积分环节以及微分环节组成的,通过各环节组成的线性结构对给定输出与实际输出之差进行调节,使执行机构最终达到预定输入量的控制思想被称之为PID控制理论。
图1 PID控制原理框图。
(1)在式(1)中,Kp、Ki以及Kd为PID控制理论三个重要参数,分别表示为比例环节的增益,是无量纲参数;Ki为积分环节的参数,Kd为微分环节增益参数,单位为s。
这些参数需要根据系统状态进行不断调整,主要通过在线辨识方法来完成被控系统参数的整定,最终得到所需的控制结果。
其控制算法为(2)式所示。
Δu(k)=KpΔe(k)+KiΔe(k)+Kd[Δe(k)-Δe(k-1)] (2)(2)式中,为其积分系数,为其微分系数,T为其采样周期。
1.2 模糊控制基本原理模糊控制是基于工程技术人员丰富操作的经验或大量实际操作数据归纳总结出的,用自然语言来表述的,采用编程语言通过计算机控制系统可以实现的算法思想。