参数自整定模糊PID在温度控制中的应用
- 格式:pdf
- 大小:117.96 KB
- 文档页数:3
参数自整定模糊PID控制器在模拟铝电解槽中的应用
在铝电解槽的生产过程中,控制铝液温度和浓度是非常重要的任务。
传统的PID控制器在这方面表现出局限性,因为它们难以应对复杂的非线性系统。
为了提高控制效果,研究人员开始探索新的控制算法,其中包括模糊PID控制器。
模糊PID控制器结合了模糊控制和PID控制的优点,能够更好地应对非线性系统的控制问题。
它能够自动调整控制参数,并且能够根据实际情况进行参数整定,提高系统的稳定性和鲁棒性。
在模拟铝电解槽中的实验中,我们使用了参数自整定模糊PID控制器来控制铝液温度和浓度。
首先,我们收集了铝液温度和浓度的实时数据,并将其输入到控制器中。
控制器根据这些数据进行模糊推理,得出相应的控制动作。
然后,控制器将控制信号发送给执行机构,调整铝液温度和浓度。
实验结果显示,参数自整定模糊PID控制器在控制铝液温度和浓度方面具有优越性能。
它能够快速地响应系统变化,使铝液温度和浓度保持在设定值附近。
与传统的PID控制器相比,模糊PID控制器具有更好的鲁棒性和适应性。
此外,参数自整定模糊PID控制器还具有自动整定参数的功能,能够根据系统的实际运行情况自动调整参数,使控制系统更
加稳定和可靠。
这对于长时间运行的铝电解槽来说尤为重要,因为系统参数可能会随着时间的推移而发生变化。
综上所述,参数自整定模糊PID控制器在模拟铝电解槽中的应用具有很大的潜力。
它能够有效地控制铝液温度和浓度,提高生产效率和产品质量。
未来,我们将进一步研究和改进这种控制器,以适应更复杂的工业控制系统。
文章编号:1001.9944(2009)10-0039-03参数自整定模糊P I D控制在烘干炉中的应用马金雷,虎恩典,王祥(宁夏大学机械工程学院。
银川750021)摘要:将参数自整定模糊控制与传统PID控制相结合。
实现了列'PID参数的在线自整定,克服控制系统的大滞后、非线性等不利因素的影响。
该控制器在烘干炉温度控制系统中.取得了良好的控制效果。
关键词:模糊控制;PID控制;参数自整定;烘干炉中图分类号:TP273文献标志码:APar am et er s A ut o-t uni n g Fuzz y PI D C ont r ol l er a nd I t s A ppl i c at i on i n D r yi ng Fur na ce T em per at ur e C ont r olM A J i n—l ei,H U E n—di an,W A N G X i ang(Sch ool of M e cha ni ca l E ngi neer i n g,N i ngxi a U ni ver si t y,Y i n chuan750021,C hi na)A bst r act:Thi s pa per pr es ent s a con t r ol ler by c om bi ni ng aut o-t u ni ng f uzzy cont r ol w i t h t r adi t ional PI D cont r01.T he m et hod i s use d t o t une t he PI D par am e t er s onl i ne a nd i t c a n ov er com e t he i nf l uenc e of l ar ge del ay a nd nonl i nea r i n pr oces s cont r ol s ys t em.I t achi e ves a goo d cont r ol ef f ectnes s i n t he dr yi ng f ur nace t em per a t ur e cont r ol s y s t em.K e y w or d s:f u zzy co nt r ol;PI D con t r ol;par am e t er aut o-t u ni ng;dr yi ng f ur n ace烘干炉是电机制造工业中必不可少的设备之一。
基于模糊PID参数自整定的温度控制系统的研究摘要:工业温度控制系统具有非线性、时变性和滞后性等特性,严重影响温度控制的快速性和准确性,为了解决常规PID参数调节在温度控制中适应性差,调节效果不理想的问题,这里采用了模糊PID参数自整定控制方法,用模糊控制规则对PID参数进行修改,利用Matlab的Simulink仿真工具箱做了常规PID与模糊PID的仿真对比试验。
仿真结果表明,模糊PID参数自整定控制效果在超调量和调节时间上都小于常规PID,提高系统快速性和准确性,改善了温摘要:工业温度控制系统具有非线性、时变性和滞后性等特性,严重影响温度控制的快速性和准确性,为了解决常规PID参数调节在温度控制中适应性差,调节效果不理想的问题,这里采用了模糊PID参数自整定控制方法,用模糊控制规则对PID参数进行修改,利用Matlab的Simulink仿真工具箱做了常规PID与模糊PID的仿真对比试验。
仿真结果表明,模糊PID参数自整定控制效果在超调量和调节时间上都小于常规PID,提高系统快速性和准确性,改善了温度系统动态性能。
关键词:温度控制;Matlab仿真;模糊规则;PID在工业生产过程中温度是重要的控制参数之一,对温度的有效控制对于保证生产质量具有重大的现实意义和理论价值。
工业温度控制系统具有非线性、时变性和滞后性等特性,而常规PID控制器参数往往整定不良,性能欠佳,对运行的工作情况适应性差,导致常规PID控制不能使温度控制达到理想效果。
为了改善常规PID控制效果,增强系统的适应性,实现PID参数自整定,本文设计出一种PID参数自整定的模糊控制器。
利用模糊逻辑对PID控制器参数进行调整实现控制效果最优,将温度作为控制对象,并利用Matlab的Simulink工具箱实现仿真对比分析常规PID与模糊PID的曲线,最后应用到实际的温度控制系统中,对比分析常规PID与模糊PID的控制效果。
1 PID控制算法的相关介绍1.1 PID控制算法PID控制器因为结构简单、容易实现,并且具有较强的鲁棒性,因而被广泛应用于各种工业过程控制中。
模糊PID控温算法的具体实现(⼀):参数⾃整定模糊PID算法概念 上个学期已经基本上实现了PID的温控算法,为了撰写⼩论⽂,这个学期最先要做的事情就是实现模糊PID的温控算法。
模糊控制系统的构成与与常规的反馈控制系统的主要区别在于控制器主要是由模糊化,模糊推理机和精确化三个功能模块和知识库(包括数据库和规则库)构成的。
具体实现过程如下所⽰:(1)预处理: 输⼊数据往往是通过测量设备测量得到的⼀个具体数据,预处理就是在它们进⼊控制器前对这些数据进⾏分类,或性质程度的定义。
预处理过程也是量化过程,它是在离散空间中把输⼊数据划分为若⼲个数字级别。
例如,假设⼀个反馈误差为 4.5,误差空间是(-5,-4…4,5),量化器会使它靠近离它最近的级别,四舍五⼊到 5。
称量化器量化的⽐例为量化因⼦。
量化过程是个削减数据量的⽅法,但是如果量化过于粗糙,控制器会振荡甚⾄失去平衡。
(2)模糊化 在进⾏模糊化时,需要确定模糊集论域中语⾔变量各值所对应的模糊⼦集的⾪属度函数。
⾪属度函数⼀般是根据操作者的经验初步确定,在调试开发甚⾄控制器运⾏中需不断修正和优化,以满⾜控制的要求。
⾪属度函数的形状很多,但是影响模糊控制器性能的关键因素是各模糊集覆盖论域的情况,⽽⾪属函数的形状在达到控制要求⽅⾯并⽆⼤的差别,为使数学表达和运算简单,⼀般选⽤三⾓形、梯形⾪属函数。
但⾪属函数的幅宽⼤⼩对性能影响较⼤,⾪属函数形状较陡时,引起的输出变化较剧烈,控制的灵敏度⾼;⾪属函数形状平缓时,引起的输出变化较缓慢,对系统的稳定性好。
因此,在选择⾪属函数时,⼀般在偏差较⼩或接近于零附近时,采⽤形状较陡的⾪属函数;⽽在偏差较⼤的区域采⽤形状平缓的⾪属函数,以使系统具有良好的鲁棒性。
⽽且在实际⼯作中,不应出现三个⾪属函数相交的状态。
⼀般,任何两个模糊⼦集的交集的最⼤⾪属度中的最⼤值取为 0.4~0.8 之间。
另外,⾪属函数的位置分布对控制性能也有⼀定的影响,当函数在整个论域平均分布时,控制效果并不好,因此,⼀般将零固定,其它模糊⼦集向零集靠拢,以达到较好的控制效果。