共线向量定理
- 格式:ppt
- 大小:671.00 KB
- 文档页数:7
平面向量共线向量定理1. 什么是共线向量?说到平面向量,咱们先得搞明白什么是共线向量。
共线向量,简单来说,就是一群向量,它们的方向一致,就像一群小鸟齐齐飞向同一个方向。
想象一下,如果你和朋友们都朝同一个地方走,那你们就是共线的。
这样的向量在数学上可不是随便说说,它们有着特别的关系,甚至可以通过一些简单的计算来证明。
1.1 向量的定义向量其实就像一条有方向的箭,箭头指的地方就是它的方向,而箭的长度就是它的大小。
想象一下,如果你在操场上朝一个方向跑,跑的快慢、方向都可以用向量来表示。
平面向量则是在二维平面上的向量,咱们日常生活中的位置、速度等都可以用平面向量来描述。
1.2 向量的加法与数乘现在,咱们再聊聊向量的加法和数乘。
就像把两根同样的手指放在一起,你的总长度就变大了。
向量加法也是如此,把两个向量的起点连起来,最后的箭头指向的地方就是它们的和。
而数乘,就像你把这根手指伸长了几倍,方向不变,但大小却变大了。
这些操作在数学上是基础,但实际上它们的用途可多了去了。
2. 共线向量的性质接下来,咱们得看看共线向量的性质。
首先,共线向量的方向是一致的,换句话说,它们的方向角是相同的。
如果你把两根共线向量放在一起,你会发现它们可以重合,仿佛它们就是亲兄弟。
其次,任何一个共线向量都可以表示成其他向量的倍数,听起来有点复杂,其实就像是你把一道菜用不同的调料做成的风味,但本质上还是那道菜。
2.1 数学表达说到数学表达,咱们可以用公式来理解这一点。
如果有两个向量 ( vec{a ) 和( vec{b ),它们是共线的,那就意味着存在一个非零的实数 ( k ),使得 ( vec{a = k cdot vec{b )。
简单来说,就是你可以通过某种方式把一个向量变成另一个向量,这就叫共线。
2.2 生活中的例子在生活中,我们也能找到共线向量的例子。
比如说,两个车沿着同一条道路行驶,不管它们的速度多快或慢,只要方向一致,它们就可以看作是共线向量。
向量共线定理和向量基本定理知识点归纳:1. 向量共线定理(两个向量之间的关系)向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b a λ=.变形形式:已知直线l 上三点,,A B P ,O 为直线l 外任一点,有且只有一个实数λ,使得()1OP OA OB λλ=-+.2. 平面向量基本定理(平面内三个向量之间的关系) 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+. 考点1 向量共线定理题型 1 判断向量共线、三点共线、两直线平行例1 如图,已知3AD AB =,3DE BC =,试判断AC 与AE 是否共线?例2已知向量,a b ,且2AB a b =+,56BC a b =-+,72CD a b =-则一定共线的三点是: .A ,,A B D .B ,,A B C .C ,,B C DAD.D ,,A C D例3 根据下列条件,分别判断四边形ABCD 的形状 ⑴AD BC = ⑵13AD BC =⑶AD BC =,且AB AD=题型2 向量共线定理的应用 例 4 ⑴已知点C在线段AB上,且52AC CB =,则AC =AB ,BC = AB⑵设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值.⑶已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且A B C ,, 三点共线(该直线不过点O ),则200S 等于 .A 100 .B 101 .C 200 .D 201考点3 平面向量基本定理题型 在几何图形中,用基底表示其他向量 例5 如图,ABCD 的两条对角线相交于点M ,且AB a =,AD b =,用,a b 为基底表示,,,MA MB MC MDBC例6 D 是ABC △的边AB 上的中点,则向量CD =.A 12BC BA -+ .B 12BC BA -- .C 12BC BA - .D 12BC BA+例7如图,平面内有三个向量OA OB OC ,,,其中OA 与OB 的夹角为1200,OA与OC的夹角为300,且1OA OB ==,23OC =.若OC OA OBλμ=+(),R λμ∈,则λμ+的值为练习:1. 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e2. 在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的A 、充分不必要条件B 、必要不充分条件AB CD AOBCABC DC 、充要条件D 、既不充分也不必要条件3. 已知:2121212CD ,B C ),(3e e e e e e AB +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线4. 如图,已知,,3AB a AC b BD DC ===,用,a b 表示AD ,则AD =( )A .34a b + B .1344a b + C .1144a b + D .3144a b +5. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c6. 在ABC△中,已知D是AB边上一点,若2AD DB=,13CD CA CB λ=+则λ= .A 23 .B 13 .C 13- .D 23-7. D 、E 、F 分别是△ABC 的BC 、CA 、AB 上的中点,且a BC =,b CA =,给出下列命题,其中正确命题的个数是( )①b a AD --=21 ②b a BE 21+=③b a CF 2121+-= ④0=++CF BE ADA 、1B 、2C 、3D 、48. 设12,e e 是两个不共线的向量,若122a e e =-与12b e e λ=+共线,则实数λ=9. 在平行四边形ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN = (用,a b 表示)10. 如图,在△ABC 中,已知2AB =,3BC =,60ABC ∠=︒,AH BC ⊥于H ,M 为AH 的中点,若AM AB BC λμ=+,则λμ+= .设12,e e 是不共线的向量,124e e -与12ke e +共线,则实数k 的值是 若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3a ,CB → =2b ,求ABDEA BCH•MCD → ,CE → .已知a +b=213e e +,a -b=212e e -,用1e 、2e 表示a =。