雪花曲线
- 格式:ppt
- 大小:370.50 KB
- 文档页数:14
雪花中的数学问题雪花中的数学问题主要是与雪花曲线(也称为科赫曲线)有关。
雪花曲线是由一组连续的三角形构成,每个三角形都以一个点为中心,向外延伸出三个分支,每个分支又继续向外延伸出三个分支,如此不断重复。
这种曲线的形状类似于雪花,因此得名。
在雪花曲线中,有一个重要的数学概念叫做“迭代函数系统”(Iterated Function Systems,简称IFS)。
迭代函数系统是由一组函数构成,每个函数都会将输入的图像变换成另一幅图像。
在雪花曲线的生成过程中,每个三角形都可以看作是一个迭代函数,通过不断应用这些函数,最终生成了雪花曲线的形状。
此外,雪花曲线还与分形几何有关。
分形几何是一种研究形状和结构的数学分支,它的特点是可以通过不断迭代来生成复杂的形状。
雪花曲线是一种典型的分形几何图形,其形状和结构可以通过迭代函数系统和分形几何的理论来描述和分析。
除了在自然界中发现的美丽分形结构,雪花曲线还与计算机图形学和数据压缩等领域有着紧密的联系。
在计算机图形学中,雪花曲线可以作为一种生成复杂形状和图案的有效方法。
而在数据压缩领域,雪花曲线因其独特的形状和结构也被用作一种高效的数据压缩算法。
此外,雪花曲线还被应用于图像处理和模式识别等领域。
通过利用雪花曲线的特性和算法,可以实现对图像的高效处理和识别。
例如,在图像处理中,可以使用雪花曲线来分割图像中的不同区域,从而实现图像的分割和识别。
总之,雪花曲线作为一种独特的数学概念和分形几何图形,不仅在自然界中有着广泛的应用,还在计算机科学、数据压缩、图像处理和模式识别等领域发挥着重要的作用。
通过深入研究和探索雪花曲线背后的数学原理和算法,我们可以不断发现新的应用场景并推动相关领域的发展。
雪花曲线的有趣故事在自然界中,有一种美妙而神奇的现象叫做“雪花曲线”。
这个现象是指雪花的形状会随着温度的变化而改变,从而形成不同的曲线形状。
这个有趣的现象背后隐藏着一段引人入胜的故事。
故事发生在一个寒冷的冬天。
一个年轻的科学家叫做阿尔弗雷德,对雪花的形状变化产生了浓厚的兴趣。
他花了很多时间观察和研究不同温度下雪花的形态。
他发现,当温度越低,雪花的形状就越接近于曲线。
阿尔弗雷德意识到,这种雪花曲线可能是由于水分子在结冰时的特殊排列所致。
他开始进行实验,使用显微镜观察结冰过程中水分子的排列情况。
他发现,水分子在接近冰点的温度下会形成六边形的晶体结构,而在低于冰点的极端寒冷温度下,水分子会形成一种特殊的螺旋排列。
阿尔弗雷德非常激动,他开始将这些发现应用于他的研究当中。
他设计了一个实验装置,通过控制温度的变化来观察雪花的形态。
他发现,当温度处于特定的范围时,雪花的形状会呈现出美丽的曲线,就像被一个无形的艺术家塑造一样。
阿尔弗雷德的研究引起了科学界的广泛关注。
他的成果被认为是对自然界中奇妙现象的重要突破。
人们开始将他的研究应用于气象学和物理学中,以更好地理解和预测天气变化和自然界的规律。
除了科学意义之外,雪花曲线也给人们带来了美学上的享受。
人们开始欣赏雪花的形状和曲线,并将其应用于艺术创作中。
许多艺术家受到雪花曲线的启发,创作出了许多美丽的艺术作品。
雪花曲线的故事告诉我们,自然界中充满了无限的奇迹和美妙。
人类的探索精神和好奇心使得我们能够发现这些奇迹,并将其应用于实践中。
我们应该保持对自然界的敬畏之心,继续探索和研究其中的奥秘,为人类的发展和进步做出贡献。
总之,雪花曲线是一个令人着迷的现象,它不仅让我们对自然界的多样性有了更深的理解,也带给我们美学和艺术上的享受。
这个有趣的故事告诉我们,科学和艺术可以相互交融,创造出更加美好的世界。
科赫曲线
简介
科赫曲线(Koch curve )是一种像雪花的几何曲线,所以又称为雪花曲线。
1904年瑞典数学家科赫第一次描述了这种不论由直段还是由曲段组成的始终保持连通的线,因此将这种曲线成为科赫曲线。
定义
设想一个边长为1的等边三角形,取每边中间的三分之一,接上去一个形状完全相似的但边长为其三分之一的三角形,结果是一个六角形。
现在取六角形的每个边做同样的变换,即在中间三分之一接上更小的三角形,以此重复,直至无穷。
外界的变得原来越细微曲折,形状接近理想化的雪花。
画法
1、任意画一个正三角形,并把每一边三等分;
2、取三等分后的一边中间一段为边向外作正三角形,并把这“中间一段”擦掉;
3、重复上述两步,画出更小的三角形。
4、一直重复,直到无穷,所画出的曲线叫做科赫曲线。
特性
1、它是一条连续的回线,永远不会自我相交。
2、曲线任何处不可导,即任何地点都是不平滑的。
3、曲线是无限长的,即在有限空间里的无限长度。
4、曲线上任意两点距离无穷大。
5、每次变化面积都会增加,但是总面积是有限的,不会超过初始三角形的外接圆。
思考
科赫曲线中产生一个匪夷所思的悖论:"无穷大"的边界,包围着有限的面积。
这让保守派数学大师们都很难相信。
科赫曲线是比较典型的分形图形,它具有严格的自相似特性。
提问:在有限面积里面,无穷的去选择无穷小的点来组成的"封闭"曲线.会包围着无穷大的面积吗?。
科赫雪花周长推导公式过程
科赫雪花曲线由一个正三角形生成,即将正三角形的每一边三等分后将中间一段向外凸起成一个以该段长度为边长的正三角形(去掉底边),然后对每一段直线又再重复上述过程,这样无休止地重复下去既得科赫雪花曲线。
它最早出现在海里格·冯·科赫的论文《关于一条连续而无切线,可由初等几何构作的曲线》。
科赫雪花是以等边三角形三边生成的科赫曲线组成的。
科赫雪花曲线是分形曲线,随着N增大,长度趋向于无穷大.
设三角形边长为1,则三角形周长为3
周长为1 x 4/3 = 4/3
周长为1 x 4/3 x 4/3 = 16/9
周长为1 x 4/3 x 4/3 x 4/3 x 4/3......= ∞
周长和面积只有给出具体的N才有意义, 下面给出它的计算式:周长计算公式:
(4/3)^n
面积计算公式:
1+(4/9)×3+(4/9)^2×3+(4/9)^3×3
+……+(4/9)^n×3。
一、教学背景分析:本节课所学内容可以看作属于高一数学《数列》中的内容,《数列》是人教版教材中第三章的内容,在讲完了等比数列后开设本节研究课。
本节课通过研究大家熟知的雪花,分析它的形状、周长及其面积,来激发大家学习的兴趣,唤起大家对数学美的追求。
同时通过研究雪花曲线,将分形几何的内容逐步渗透到我们的教学中来,为以后的进一步学习打下铺垫。
二、教学目标:1.认知目标:①学会用等比数列解决实际问题;②了解雪花曲线,了解分形几何。
2.能力目标:①培养学生自我探究,自我发现的能力;②利用几何画板自我掌握新知识的能力;③同学之间相互协作的能力。
3.情感目标:①创设问题情境,激发学生学习数学的热情和兴趣;②培养学生对数学美的认识,对美的追求。
三、教法、学法:通过提出问题“雪花的形状如何?”引出话题,激起学生的兴趣,相互讨论得出结论,由老师给出科赫的雪花曲线构成方法,让学生在几何画板环境下作雪花曲线,以探求曲线形状。
雪花曲线的周长及其所围面积可通过讨论由学生来发现计算方法,老师在其中起引导作用。
本节课以学生为主来发现问题、解决问题,通过学生之间的讨论来达到对能力的培养。
四、教学重、难点:重点:对雪花曲线认识及其周长、所围面积的求法。
难点:雪花曲线的周长无限长,而面积是有限的,即无限的曲线围成一个有限的面积的认识。
五、教学程序:(一)创设情景,激起兴趣通过封面的雪花飘落,引出“雪花形状”这个话题,让学生自由探讨,发表自己对雪花的理解,以激起他们对研究雪花的兴趣。
(二)激烈讨论,引出话题曲线生长(5次)当同学们通过讨论,对雪花形状有了一个初步认识之后,由老师给出科赫的构造雪花曲线的方法,让学生使用几何画板作为工具来研究雪花曲线的形状。
雪花曲线是无限生长的,永无止境,老师使用已做好的课件来演示曲线的生长过程,对曲线放大,观察局部,引起学生对曲线自相似...的初步认识。
无限生长的曲线它的周长如何?所围面积如何?提出问题让学生进一步思考。
奇妙的雪花曲线教学目标:(知识目标)1 通过对雪花曲线周长、面积等问题的探究让学生了解数学知识的形成过程;2 使学生了解分形几何的有关内容。
(能力目标)1 通过系列的探究性活动,使学生了解提出和解决数学问题的方法;2 通过对雪花曲线等图形的探究提高学生应用数学的能力。
(情感目标)1 让学生感受数学来源于实践,又服务于实践的辨证唯物主义观点2 通过生活中的具体实例,培养学生对数学美的认识以及对大自然的热爱。
教学重点:探究雪花曲线的周长及其所围面积;教学难点:雪花曲线所围面积的计算方法的寻求;教学方法:引导探究式教学媒体:计算机教学过程设计:1一、问题背景:播放雪景的图片,提问雪花的形状如何,激发学生兴趣。
二、研究问题:如果把雪花想象成如图所示的正六角形,提问学生能否从一个等边三角形出发作出这样的图形。
接着进一步指出,雪花的形状其实非常复杂,右图是瑞典数学家科赫将雪花理想化得到的科赫雪花曲线,提问学生能否仍然从等边三角形出发作出这样的一条雪花曲线,由学生讨论得出:在等边三角形每条边的中央分别向外作等边三角形,边长是原三角形边长的三分之一,就得到了一个六角形。
依照此法,无限制的进行下去,就可以得到漂亮的雪花曲线了。
雪花曲线除了具有漂亮的外形,还蕴涵了哪些数学规律,这就是我们这节课要研究的内容(板书课题)2问题1:对雪花曲线作进一步思考,在雪花曲线的每一次生长中,相对于原三角形都发生了哪些变化,导学生发现它的边长、边数、周长和面积等都发生了变化。
问题2:逐步生长,探究周长的变化规律引导学生发现等边三角形的每一边在生长过程中所发生的变化都是相同的,因此可以只研究其中一条边的变化规律,从而找到解决问题的最优化策略。
让学生自主发现、互相讨论,共同寻找到规律:3得到周长的计算公式后可以提问学生:当n越来越大时,雪花曲线的周长会有什么变化,当原图中三角形的边长为1cm时,显然三角形的周长是3cm,n=33呢,n=82呢, 我们不妨用计算机计算出这样一组数据:n=33时,周长为39819.84cm,约为398米;10 n=82时,周长约为5.27×10cm。
分形之科赫(Koch)雪花科赫曲线是⼀种分形。
其形态似雪花,⼜称科赫雪花、雪花曲线.瑞典⼈科赫于1904年提出了著名的“雪花”曲线,这种曲线的作法是,从⼀个正三⾓形开始,把每条边分成三等份,然后以各边的中间长度为底边。
分别向外作正三⾓形,再把“底边”线段抹掉,这样就得到⼀个六⾓形,它共有12条边。
再把每条边三等份,以各中间部分的长度为底边,向外作正三⾓形后,抹掉底边线段。
反复进⾏这⼀过程,就会得到⼀个“雪花”样⼦的曲线。
这曲线叫做科赫曲线或雪花曲线。
给定线段AB,科赫曲线可以由以下步骤⽣成:(1)将线段分成三等份(AC,CD,DB)(2)以CD为底,向外(内外随意)画⼀个等边三⾓形DMC(3)将线段CD移去(4)分别对AC,CM,MD,DB重复1~3。
反复进⾏这⼀作图过程,得到的曲线越来越精细。
科赫曲线有着极不寻常的特性,不但它的周长为⽆限⼤,⽽且曲线上任两点之间的距离也是⽆限⼤。
该曲线长度⽆限,却包围着有限的⾯积。
很神奇的⼀个曲线,他说明了⼀个悖论:“⽆限长度包围着有限⾯积。
”程序中实现了0~8级的科赫雪花分形.程序设计时,将这9级曲线的顶点数据全部放置在⼀个内存中.并使⽤如下结构体进⾏设置:struct SnowLevel{Yuint vertexStart;Yuint verticesCount;};SnowLevel m_snowLevels[SNOW_LEVELS_COUNT];Yuint m_currentLevel;分形图形的顶点⽣成算法代码如下:static void Zhe(const Vector3& vStart, const Vector3& vEnd, Vector3* pVertices){Vector3 vSub = vEnd - vStart;pVertices[0] = vStart;pVertices[1] = vStart + vSub/3;pVertices[3] = vStart + vSub*2/3;pVertices[4] = vEnd;Yreal alfa = atan2f(vSub.y, vSub.x);alfa += YD_REAL_PI/3;Yreal l = D3DXVec3Length(&vSub)/3;pVertices[2].x = pVertices[1].x + cosf(alfa)*l;pVertices[2].y = pVertices[1].y + sinf(alfa)*l;pVertices[2].z = 0.0f;}void CFractalSnowEntity::Fractal(Vector3* pVertices){pVertices[0].x = 0.0f;pVertices[0].y = YD_SNOW_RADIUS;pVertices[0].z = 0.0f;pVertices[1].x = YD_SNOW_RADIUS*sinf(YD_REAL_PI/3);pVertices[1].y = -YD_SNOW_RADIUS*sinf(YD_REAL_PI/6);pVertices[1].z = 0.0f;pVertices[2].x = -pVertices[1].x;pVertices[2].y = pVertices[1].y;pVertices[2].z = 0.0f;for (Yuint i = 1; i < SNOW_LEVELS_COUNT; i++){const Vector3* pSrc = pVertices + m_snowLevels[i - 1].vertexStart;Vector3* pDest = pVertices + m_snowLevels[i].vertexStart;Yuint c = m_snowLevels[i - 1].verticesCount;for (Yuint j = 0; j < c; j++){Zhe(pSrc[j], pSrc[(j + 1)%c], pDest);pDest += 4;}}}下载地址:科赫雪花第0级科赫雪花第1级科赫雪花第2级科赫雪花第3级科赫雪花第4级科赫雪花第5级科赫雪花第6级科赫雪花第7级科赫雪花第8级软件使⽤说明键盘0~8,分别设置第0级到第8级分形.这是个3D程序,⿏标右键的拖动可以改变视⾓.键盘X⽤于恢复为默认视⾓.键盘F11⽤于全屏切换.。
雪花曲线面积公式雪花曲线(snowflake curve)是一种分形曲线,具有类似于雪花的形状。
雪花曲线在科学、工程、计算机图形学等领域都有广泛的应用。
本文将详细介绍雪花曲线的面积公式、原理和实际应用场景。
一、雪花曲线的面积公式雪花曲线的面积公式是由德国数学家康托尔(Georg Cantor)最先发现的,即:S=\frac{3\sqrt{3}}{20}L^2S表示雪花曲线的面积,L表示雪花曲线的边长。
二、雪花曲线的原理雪花曲线是一种基于分形几何的曲线,具有自相似性和不规则性。
雪花曲线的生成是通过迭代过程得到的。
具体来说,生成一个雪花曲线需要以下几个步骤:Step 1:以一个正三角形为起点。
Step 2:将正三角形的每条边等分为3段,并将中间一段替换为两个边长相等、与中间一段成60度角的小正三角形,即在正三角形的每一条边上均生成一个小正三角形。
Step 3:对于每个小正三角形,重复Step 2的操作,直到达到所需的细节程度。
整个过程类似于“分形生长”,即通过不断重复根据一定规律生成新的形状。
这样生成的雪花曲线具有自相似性和不规则性,且细节层次丰富,看起来别具一格。
三、雪花曲线的实际应用场景1.计算机图形学雪花曲线是计算机图形学中常用的一种分形曲线,可以通过计算机程序生成。
由于雪花曲线具有自相似性和不规则性,可以给图形增加一定的复杂度和美感,因此在图形设计领域有着广泛的应用。
2.科学研究雪花曲线还被应用于物理、化学、生物等科学研究领域。
在材料科学中,雪花曲线可以用于研究材料表面的形貌、结构和性质。
在气象学中,雪花曲线可以用于模拟雪花的形状和降雪规律。
3.金融市场分析雪花曲线还可以应用于金融市场的波动性分析和预测。
利用雪花曲线的自相似性和不规则性,可以揭示金融市场存在的某些隐含规律或规律的破坏,进而预测市场的趋势和波动,为投资决策提供参考。
四、结语雪花曲线是一种基于分形几何的曲线,具有自相似性和不规则性,广泛应用于计算机图形学、科学研究、金融市场分析等领域。
求出雪花曲线的面积这个美丽的几何分形是由赫尔奇·冯·科克在1904年创造的。
为了生成科克雪花曲线,先从一个等边三角形开始。
把每一边分成三等分。
取走中间的三分之一,在被取走线段处向外作出两边为此线段三分之一长度的尖角。
重复这一过程得到各个尖角,以至无穷。
看来似乎矛盾的两个迷人的特性是——·雪花曲线的面积是原来那个生成它的三角形的面积的8/5;·雪花曲线的周长是无穷大。
雪花曲线的面积是生成它的三角形的面积的8/5的非正式证明如下。
Ⅰ.假定等边△ABC的面积是k。
Ⅱ.分△ABC为九个全等等边三角形,各具有面积a,如图所示。
因此k=9a。
现在集中考虑确定雪花曲线六个初始尖角中每一个面积的极限。
我们知道大尖角的面积是a,因为它是九个三角形之一向外翻转而形成的。
在由它生成的下一批尖角中,每一尖角具有面积a/9,因为和原来的三角形一样,它也被分为九个全等三角形后再把其中一个向外翻转而形成下一批的一个尖角。
事实上,每一个相继的尖角都被分为九个全等三角形,同时在两边生出两个三角形。
Ⅲ.把这个尖角本身及其不断生成的各个尖角的面积相加如下:Ⅳ.现在,把六个尖角中每一个所造成的面积相加,再加上原来的生成三角形内部的六边形,我们得到Ⅴ.上式变成方括弧内第二项开始的级数是几何级数,它的公比是4/9,首项是2/9,所以我们能计算它的极限:(2/9)/(1-(4/9))=2/5。
Ⅳ.代入级数的极限值2/5,我们得到(1+2/5)6a+6a=72a/5。
现在我们需要把雪花曲线的面积用原来的生成三角形面积k来表示。
因为k=9a,我们得a=k/9。
把这a值代入72a/5,我们得(72/5)(k/9)=(8/5)k。