高中数学人教A版必修4习题:第一章三角函数 1.2.2 含解析
- 格式:docx
- 大小:33.62 KB
- 文档页数:6
高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。
1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。
任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法||。
3.牢固掌握同角三角函数的两个关系式||,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中||,设α是一个任意角||,α终边上任意一点P (除了原点)的坐标为(,)x y ||,它与原点的距离为(0)r r ==>||,那么(1)比值y r 叫做α的正弦||,记作sin α||,即sin y r α=; (2)比值x r 叫做α的余弦||,记作cos α||,即cos xr α=;(3)比值y x 叫做α的正切||,记作tan α||,即tan yxα=;(4)比值x y 叫做α的余切||,记作cot α||,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合||,α的终边没有表明α一定是正角或负角||,以及α的大小||,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识||,对于确定的角α||,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时||,α的终边在y 轴上||,终边上任意一点的横坐标x 都等于0||,所以tan yxα=无意义;同理当()k k Z απ=∈时||,y x =αcot 无意义;(4)除以上两种情况外||,对于确定的值α||,比值y r 、x r 、y x、xy 分别是一个确定的实数||。
第6课时 同角三角函数的基本关系(2)对应学生用书P11知识点一 化简问题1.当2k π-π4≤α≤2k π+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是( )A .2sin αB .-2sin αC .2cos αD .-2cos α 答案 C解析 当2k π-π4≤α≤2k π+π4(k ∈Z )时,sin α+cos α>0,cos α-sin α>0, ∴1-2sin αcos α+1+2sin αcos α=sin α-cos α2+sin α+cos α2=|sin α-cos α|+|sin α+cos α|=cos α-sin α+sin α+cos α=2cos α.2.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α. 解 原式=1-cos 4α-sin 4α1-cos 6α-sin 6α =1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α=sin 2α1+cos 2α-sin 4αsin 2α1+cos 2α+cos 4α-sin 6α =1+cos 2α-sin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α+sin 2αcos 2α-sin 2α=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23.3.已知-2<x <0,sin x +cos x =5,求下列各式的值.(1)sin x -cos x ; (2)1cos 2x -sin 2x . 解 (1)∵sin x +cos x =15,∴(sin x +cos x )2=⎝ ⎛⎭⎪⎫152,即1+2sin x cos x =125,∴2sin x cos x =-2425.∵(sin x -cos x )2=sin 2x -2sin x cos x +cos 2x =1-2sin x cos x =1+2425=4925,又-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x <0, ∴sin x -cos x =-75.(2)解法一:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,解得⎩⎪⎨⎪⎧sin x =-35,cos x =45,∴1cos 2x -sin 2x =11625-925=257.解法二:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,∴1cos 2x -sin 2x =1cos x +sin x cos x -sin x=115×75=257. 4.已知tan α=3,求下列各式的值: (1)sin 2α-2sin αcos α-cos 2α4cos 2α-3sin 2α; (2)34sin 2α+12cos 2α. 解 (1)原式的分子、分母同除以cos 2α,得 原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223. (2)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1 =34×9+129+1=2940.知识点三 证明问题5.求证:sin α(1+tan α)+cos α⎝⎛⎭⎪⎫1+tan α=sin α+cos α. 证明 1sin α+1cos α=sin 2α+cos 2αsin α+sin 2α+cos 2αcos α=sin α+cos α·cos αsin α+sin α·sin αcos α+cos α=sin α+cos α·1tan α+sin αtan α+cos α=sin α(1+tan α)+cos α⎝ ⎛⎭⎪⎫1+1tan α. 6.求证:1-2sin2x cos2x cos 22x -sin 22x =1-tan2x1+tan2x . 证明 左边=cos 22x +sin 22x -2sin2x cos2xcos 22x -sin 22x =cos2x -sin2x2cos2x -sin2x cos2x +sin2x=cos2x -sin2x cos2x +sin2x =1-tan2x1+tan2x=右边. ∴原等式成立.对应学生用书P12一、选择题1.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( )A .23 B .-23 C .13 D .-13答案 B解析 由sin θ+cos θ=43,得1+2sin θcos θ=169,∴2sin θcos θ=79,又θ∈⎝⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-1-2sin θcos θ=-23. 2.已知sin α-cos α=2,则tan α=( ) A .-1 B .-22 C .22D .1 答案 A解析 将等式sin α-cos α=2的两边平方,整理得1+2sin αcos α=0,即sin 2α+cos 2α+2sin αcos α=0,∴(sin α+cos α)2=0,∴sin α+cos α=0,∴sin α=-cos α.由已知得cos α≠0,∴tan α=sin αcos α=-1.故选A .3.下列结论能成立的是( ) A .sin α=12且cos α=12B .tan α=2且cos αsin α=13C .tan α=1且cos α=22D .sin α=1且tan α·cos α=12答案 C解析 同角三角函数的基本关系式是指同一个角的不同三角函数值之间的关系,这个角可以是任意角,利用同角三角函数的基本关系即得C 成立.4.若π<α<3π2,1-cos α1+cos α+1+cos α1-cos α的化简结果为( )A .2tan αB .-2tan αC .2sin αD .-2sin α 答案 D解析 ∵π<α<3π2,∴sin α<0.原式=1-cos α21-cos 2α+1+cos α21-cos 2α=1-cos α|sin α|+1+cos α|sin α|=-2sin α,故选D .5.化简1-sin 2160°的结果是( ) A .cos160° B.-cos160° C .±cos160° D.±|cos160°| 答案 B解析 ∵cos160°<0,∴原式=|cos160°|=-cos160°. 二、填空题6.若2cos α+sin α=5,则1tan α=________. 答案 2解析 将已知等式两边平方,得4cos 2α+sin 2α+4sin αcos α=5(cos 2α+sin 2α),化简得4sin 2α-4sin αcos α+cos 2α=0,即(2sin α-cos α)2=0,则2sin α=cos α,故1tan α=2. 7.若cos 2x +cos x =1,则sin 4x +sin 2x 的值等于________. 答案 1解析 ∵cos 2x +cos x =1,∴cos x =1-cos 2x =sin 2x , ∴sin 4x +sin 2x =cos 2x +cos x =1.8.若tan α=2,则sin α+cos αsin α-cos α+cos 2α=________.答案165解析 原式=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α=tan α+1tan α-1+1tan 2α+1=2+12-1+14+1=165. 三、解答题9.已知0<α<π2,若cos α-sin α=-55,求2sin αcos α-cos α+11-tan α的值.解 由cos α-sin α=-55,得1-2sin αcos α=15, ∴2sin αcos α=45,∴(cos α+sin α)2=1+2sin αcosα=1+45=95.又0<α<π2,∴sin α+cos α=355,与cos α-sin α=-55联立, 解得sin α=255,cos α=55,∴2sin αcos α-cos α+11-tan α=2sin αcos α-cos α+11-sin αcos α=cos α2sin αcos α-cos α+1cos α-sin α=55×45-55+1-55=5-95. 10.已知关于x 的方程4x 2-2(m +1)x +m =0的两个根恰好是一个直角三角形的一个锐角的正、余弦,求实数m 的值.解 设直角三角形的一个锐角为β,因为方程4x 2-2(m +1)x +m =0中,Δ=4(m +1)2-4×4m =4(m -1)2≥0,所以当m ∈R 时,方程恒有两实根. 又因为sin β+cos β=m +12,sin βcos β=m4, 所以由以上两式及sin 2β+cos 2β=1,得1+2×m 4=m +122,解得m =±3.当m =3时,sin β+cos β=3+12>0, sin β·cos β=34>0,满足题意, 当m =-3时,sin β+cos β=1-32<0,这与β是锐角矛盾,舍去.综上,m =3.周周回馈练对应学生用书P13一、选择题 1.给出下列说法:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,角的大小与角所在扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确说法的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 对于①,150°是第二象限角,390°是第一象限角,但150°<390°,错误;对于②,三角形的内角还可能为90°,是y 轴非负半轴上的角,错误;显然③正确;对于④,α与β的终边还可以关于y 轴对称,错误;对于⑤,θ还可以是x 轴非正半轴上的角,错误.2.下列各式正确的是( )A .π2=90B .π18=10° C.3°=60π D .38°=38π答案 B解析 A 中,π2=90°,故错误;B 中,π18=10°,故正确;C 中,3°=3×π180=π60,故错误;D 中,38°=38×π180=19π90,故错误.3.若角α的终边经过点P (sin780°,cos(-330°)),则sin α=( ) A .32 B .12 C .22D .1 答案 C解析 因为sin780°=sin(2×360°+60°)=sin60°=32,cos(-330°)=cos(-360°+30°)=cos30°=32,所以P ⎝ ⎛⎭⎪⎫32,32,sin α=22. 4.扇形的圆心角为150°,半径为3,则此扇形的面积为( ) A .5π4 B .π C.3π3 D .23π29答案 A解析 ∵150°=5π6,∴S =12×5π6×(3)2=5π4,故选A .5.若角α与β的终边互相垂直,则α与β的关系是( ) A .β=α+90° B .β=α±90°C .β=α+k ·360°+90°(k ∈Z )D .β=k ·360°+α±90°(k ∈Z ) 答案 D解析 如图1,角α与β终边互相垂直,β=α+90°. 如图2,角α与β终边互相垂直,α=β+90°.由终边相同角的表示方法知:角α与β终边互相垂直,则有β=k ·360°+α±90°(k ∈Z ).6.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( ) A .45 B .35 C .25 D .15 答案 B解析 因为方程4x 2+x -3=0的根为x =34或x =-1.又因为tan α是方程4x 2+x -3=0的根且α为锐角,所以tan α=34,所以sin α=34cos α,即cos α=43sin α.又sin 2α+cos 2α=1, 所以sin 2α+169sin 2α=1,所以sin 2α=925(α为锐角),所以sin α=35.二、填空题7.将90°角的终边按顺时针方向旋转30°所得的角等于________. 答案 60°解析 按顺时针方向旋转,角度减少,即90°-30°=60°.8.已知|cos θ|=-cos θ且tan θ<0,则代数式lg (sin θ-cos θ)________0.(填“>”“<”)答案 >解析 由|cos θ|=-cos θ,得cos θ≤0.又∵tan θ<0,∴角θ的终边在第二象限.∴sin θ>0,cos θ<0.由三角函数线可知sin θ-cos θ>1.∴lg (sin θ-cos θ)>0.9.已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=________.答案 - 2解析 ∵tan α·1tan α=k 2-3=1,∴k =±2,而3π<α<7π2,则tan α+1tan α=k =2,得tan α=1,则sin α=cos α=-22,∴cos α+sin α=-2. 三、解答题10.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.解 (1)将阴影部分看成是由OA 逆时针转到OB 所形成.故满足条件的角的集合为α3π4+2k π<α<4π3+2k π,k ∈Z . (2)若将终边为OA 的一个角改写为-π6,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为α-π6+2k π<α≤5π12+2k π,k ∈Z . (3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转π rad 而得到,所以满足条件的角的集合为αk π≤α≤π2+k π,k ∈Z .(4)与第(3)小题的解法类似,将第二象限阴影部分旋转π rad 后可得到第四象限的阴影部分.所以满足条件的角的集合为α2π3+k π<α<5π6+k π,k ∈Z . 11.若0<α<β<π2,试比较β-sin β与α-sin α的大小. 解 如图,在单位圆中,sin α=MP ,sin β=NQ ,弧AP 的长为α,弧AQ 的长为β,则弧PQ 的长为β-α.过P 作PR ⊥QN 于R ,连接PQ ,则MP =NR .所以RQ =sin β-sin α<PQ <PQ =β-α.所以β-sin β>α-sin α.12.(1)已知sin α是方程5x 2-7x -6=0的根,求 cos α+2πcos 4π+αtan 22π+αtan 6π+αsin 2π+αsin 8π+α的值;(2)已知sin(4π+α)=2sin β,3cos(6π+α)=2cos(2π+β),且0<α<π,0<β<π,求α和β的值.解 (1)由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35. 由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45. 当cos α=45时,tan α=-34; 当cos α=-45时,tan α=34. 所以原式=cos α·cos α·tan 2α·tan αsin α·sin α=tan α=±34. (2)因为sin(4π+α)=2sin β,所以sin α=2sin β.①因为3cos(6π+α)=2cos(2π+β), 所以3cos α=2cos β.②①2+②2,得sin 2α+3cos 2α=2(sin 2β+cos 2β)=2, 所以cos 2α=12,即cos α=±22.又0<α<π,所以α=π4或α=3π4.又0<β<π,当α=π4时,由②得β=π6;当α=3π4时,由②得β=5π6.所以α=π4,β=π6或α=3π4,β=5π6.。
1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。
(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4的全部内容。
1.2.2 同角三角函数的基本关系预习课本P18~20,思考并完成以下问题(1)同角三角函数的基本关系式有哪两种?(2)已知sin α,cos α和tan α其中的一个值,如何求其余两个值?[新知初探]同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan_α=错误!错误!。
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切错误!.[点睛] 同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里“同角”有两层含义:一是“角相同",二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin23α+cos23α=1。
[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意角α,sin2α3+cos2错误!=1都成立.( )(2)对任意角α,sin 2αcos 2α=tan 2α都成立.()(3)若cos α=0,则sin α=1.()答案:(1)√(2)×(3)×2.已知α∈错误!,sin α=错误!,则cos α=( )A.错误! B.-错误!C.-错误!D.错误!答案:A3.已知cos α=错误!,且α是第四象限角,则sin α=()A.±错误!B.±错误!C.-错误!D.-错误!答案:C4.已知sin α=错误!,α∈错误!,则tan α=________。
( 本栏目内容,在学生用书中以独立形式分册装订! )一、选择题 ( 每题 5 分,共 20 分)1.函数 f( x) =- 2sinπ)x + 1,x ∈ - ,π 的值域是 (2 A .[ 1,3] B .[ -1,3] C .[ - 3, 1]D .[ -1,1]分析:∵ x ∈π,∴ sin x ∈ [ - 1,1] ,- 2,π∴-2sin x + 1∈[- 1, 3] .答案:B2.函数 y = | sin x| 的一个单一递加区间是( ) π ππ , 3πA . - ,B .4 44 4 C. π, 3πD .3π, 2π22分析:由 y = | sin x| 的图象,易得函数y = | sin x| 的单一递加区间为π,k π,k π+23π为函数 y = | sin x| 的一个单一递加区间.k ∈ Z ,当 k = 1 时,得 π,2答案: C3.以下函数中,既为偶函数又在 ( 0,π ) 上单一递加的是 ()A . y = cos| x|B . y =cos| - x|πD . y =- sinxC .y = sin x - 22分析:y = cos| x| 在πA ;y = cos| - x| =cos | x| ,清除B ; y0, 上是减函数,清除2=sin x -π π=- cos x 是偶函数,且在 ( 0,π) 上单一递加,切合题意; y =-=- sin 2 -x2xsin 2在 ( 0,π) 上是单一递减的.答案: C4.函数 f( x) = sin 2x -π在区间 0,π上的最小值为 ()4 22A .- 1B .- 22D .0C. 2π分析:确立出 2x - 4 的范围,依据正弦函数的单一性求出最小值.∵x ∈ 0, π π π 3π π ππ2 ,∴ - ≤2x - ≤ 4 ,∴ 当 2x - 4 =- 4 时, f( x) = sin 2x -有最小值-4 4 42 .2答案: B二、填空题 ( 每题 5 分,共 15 分)5.已知函数 y =3cos( π- x) ,则当 x = ________时,函数获得最大值.分析:y = 3cos( π-x) =- 3cos x ,当 cos x =- 1,即 x = 2k π+π,k ∈ Z 时, y 有最大值 3.答案:2k π+π, k ∈ Zπ2π,则 y 的范围是 ________.,6. y = sin x , x ∈ 63分析:由正弦函数图象,关于 x ∈ π 2πππ6,3 ,当 x = 2时, y max = 1,当 x = 6 时, y min11= 2,进而 y ∈ 2, 1 .答案:1, 127.函数 y = sin( x +π ) 在 - π,π 上的单一递加区间为________.2分析:因为 sin( x +π) =- sin x ,因此要求 y = sin( x +π) 在π上的单一递加区- 2,π间,即求 y =sin x 在 -ππ2 ,π上的单一递减区间,易知为2 ,π.π 答案:,π2三、解答题 ( 每题 10 分,共 20 分 ) 8.比较以下各组数的大小:( 1) sin10π与 sin 11π;( 2) cos5π与 cos 14π .17173 9分析:( 1) ∵ 函数 y = sin x 在ππ 101110 2 ,π上单一递减,且2 <17π<17π<π,∴sin 17π>11 sin 17π.( 2) cos 5π π π14π 4π 4π3 = cos( 2π- ) = cos 3 , cos 9 = cos( 2π-) = cos.39 9π 4π∵函数 y = cos x 在 [ 0,π] 上单一递减,且0<3< 9 <π,π4π 5π14π∴cos 3 > cos 9 , ∴ cos 3 > cos9.9. 求以下函数的最大值和最小值:( 1) y = 1 π.1- sin x ; ( 2) y = 3+ 2cos 2x +321分析:( 1) ∵1- 2sin x ≥0,- 1≤ sin x ≤ 1,∴-1≤ sin x ≤ 1.6∴当 sin x =- 1 时, y max = 2 ;2当 sin x = 1 时, y min = 2.π( 2) ∵- 1≤ cos 2x + 3 ≤ 1,π∴当 cos 2x + 3 = 1 时, y max = 5;π =- 1 时, y min = 1.当 cos 2x +3能力测评10.函数 y = 2sinπωx +( ω> 0) 的周期为π,则其单一递加区间为()43ππ A . k π- , k π+( k ∈ Z)443π πB. 2k π- 4, 2k π+ 4 ( k ∈ Z)3C. k π-3π,k π+ π ( k ∈ Z) 88π( k ∈ Z)3π, 2k π+D. 2k π- 882ππ . 由- π π 分析:周期 T =π,∴=π,∴ ω= 2,∴ y = 2sin 2x + + 2k π≤ 2x + ≤ 2kω424ππ π+ , k ∈ Z ,得 k π-3π≤x ≤ k π+ , k ∈ Z .288答案:C11.函数 y = cos x +π 0, π, x ∈ 的值域为 ________. 6 2ππππ 2π分析:由 y = cos x + 6, x ∈ 0, 2 可得 x + 6 ∈ 6 ,3 ,函数 y =cos x 在区间 π 2π13 . 6, 3上单一递减,因此函数的值域为-2, 2 答案:-1, 32212.求函数 y = 3- 4sin x - 4cos 2x 的值域. 分析:y = 3- 4sin x -4cos 2x= 3- 4sin x - 4( 1- sin 2x)= 4sin 2x - 4sin x - 1, 令 t = sin x ,则- 1≤ t ≤ 1.12∴y = 4t 2-4t - 1= 4 t - 2 - 2( - 1≤ t ≤1) .1∴当 t = 2时, y min =- 2,当 t =- 1 时, y max = 7.即函数 y = 3- 4sin x - 4cos 2x 的值域为 [ - 2, 7] .π13. ( 1) 求函数 y = cos 3 - 2x 的单一递加区间;πx( 2) 求函数 y = 3sin- 的单一递加区间.分析:( 1) 因为 y = cos ππ3 - 2x = cos -2x - 3= cos 2x -π ,3y = cosπy = cos 2x -π 因此要求函数3 - 2x的单一递加区间,只需求函数的单一递加3区间即可.因为 y =cos x 的单一递加区间为2k π-π≤ x ≤ 2k π( k ∈ Z) ,π则 2k π-π≤ 2x - 3 ≤ 2k π( k ∈ Z ) ,π π解得 k π- ≤ x ≤ k π+ ( k ∈ Z) .3 6故函数 y = cos πππ -2x 的单一递加区间为 k π- , k π+( k ∈ Z) .336π x,则 y = 3sin u.( 2) 设 u =-3 2π3π当 2 + 2k π≤ u ≤ 2 + 2k π,k ∈ Z 时,y = 3sin u 随 u 增大而减小.π x又因为 u = 3 -2随 x 增大而减小, 因此当 π π x≤3π2 + 2k π≤3 - 2+ 2k π,k ∈ Z ,27ππ即- 3 - 4k π≤x ≤- 3 - 4k π,k ∈ Z ,7ππ即- 3 + 4k π≤x ≤- 3 + 4k π,k ∈ Z 时, y = 3sin π x随 x 增大而增大. 3 - 2πx的单一递加区间为因此函数 y = 3sin23 -7ππ- 3 +4k π,- 3 + 4k π ( k ∈ Z) .。
1.2.2同角三角函数的基本关系
课时过关·能力提升
基础巩固
1已知cos α=2
3
,则sin2α等于()
A.5
9
B.±59
C.√53
D.±√53
解析:sin2α=1-cos2α=5 9 .
答案:A
2已知α为锐角,sin α=3
5
,则tan α等于()
A.4
5
B.54
C.43
D.34
解析:∵α为锐角,∴cosα=√1-sin2α=4 5 .
∴tanα=sinα
cosα
=34.
答案:D
3化简√1-cos2190°的结果为()
A.cos 190°
B.sin 190°
C.-sin 190°
D.-cos 190°
解析:原式=√sin2190°=|sin190°|=-sin190°.答案:C
4已知在△ABC中,tan A=−5
12
,则cos A的值是()
A.12
13
B.−1213
C.513
D.−513
解析:∵tan A=−512,且A 是△ABC 的内角,∴A 是钝角.
∵sinA cosA =−512,∴sin A=−512cos A.
又sin 2A+cos 2A=1,
∴25144cos2A +cos2A =1,cos2A =144169,cos A=−1213.
答案:B
5若sinα-2cosα3sinα+5cosα=−5,则tan α的值为( )
A.-2
B.2 C .2316D.−2316
解析:sinα-2cosα3sinα+5cosα=sinα
cosα-23sinαcosα+5=tanα-23tanα+5=−5,解得tan α=−2316.
答案:D
6若sin θ=−1213,tan θ>0,则cos θ= .
解析:∵sin θ=−1213<0,tan θ>0,
∴θ是第三象限角,
∴cos θ<0,则
cos θ=−√1-sin 2θ=−√1-(-1213)2=−513.
答案:−513
7已知sin x=2cos x ,则sin 2x= .
解析:∵sin x=2cos x ,∴sin 2x=4cos 2x.
∴sin 2x=4(1-sin 2x ).解得sin 2x =45.
答案:45
8已知A 为锐角,且lg(1+cos A )=m ,l g 11-cosA =n,则lg sin A 的值为
.
答案:m -n 2
9求证:tanαsinα
tanα-sinα
=tanα+sinα
tanαsinα
.
证明左边=
sin2α
cosα
sinα
cosα-sinα
=sin
2α
sinα-sinαcosα
=1-cos
2α
sinα(1-cosα)
=1+cosα
sinα
,右边=
sinα
cosα+sinα
sinα
cosα·sinα
=
1
cosα+1
sinα
cosα
=1+cosα
sinα
.
左边=右边.故原式成立.
10已知2cos2α+3cos αsin α-3sin2α=1.求下列各式的值: (1)tan α;
(2)2sinα-3cosα4sinα-9cosα
.
解(1)2cos2α+3cosαsinα-3sin2α
=2cos2α+3cosαsinα-3sin2α
sin2α+cos2α
=
2+3tanα-3tan2α
1+tan2α,
则
2+3tanα-3tan2α
1+tan2α=1,
即4tan2α-3tanα-1=0.
解得tanα=−1
4或tanα=1.
(2)原式=2sinα
cosα-
3cosα
cosα
4sinα
cosα-
9cosα
cosα
=2tanα-3
4tanα-9
,
当tanα=−1
4时,原式=
7
20
;
当tanα=1时,原式=1
5
.
能力提升
1已知tan α>0,且sin α+cos α<0,则() A.cos α>0 B.cos α<0
C.cos α=0
D.cos α符号不确定
解析:∵tan α=
sinαcosα>0, ∴sinαcosα
>0,即sin α与cos α符号相同. 又sin α+cos α<0,则cos α<0.
答案:B
2若α∈[0,2π),且√1-cos 2α+√1-sin 2α=sin α−cos α,则角α的取值范围是( )
A .[0,π2]B.[π2,π]
C .[π,3π2]D.[3π2
,2π) 解析:由已知√1-cos 2α+√1-sin 2α
=√sin 2α+√cos 2α
=|sin α|+|cos α|=sin α-cos α,
∴sin α≥0,cos α≤0.
又α∈[0,2π),∴α∈[π2
,π].
答案:B 3若非零实数m ,n 满足tan α-sin α=m ,tan α+sin α=n ,则cos α等于( )
A .n -m m+n B.m -n 2
C .
m+n 2 D.m -n n+m 解析:已知条件中的两等式联立,得{tanα-sinα=m ,tanα+sinα=n ,
解得tan α=m+n 2,sinα=n -m 2,则cos α=sinαtanα=n -m n+m . 答案:A
★4已知θ是第三象限角,且sin 4θ+cos 4θ=59
,则sin θcos θ的值为( ) A .√23B.−√23C.13D.−13
解析:由sin 4θ+cos 4θ=59,
得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59
.
∴sin 2θcos 2θ=29
.
∵θ是第三象限角,
sin θ<0,cos θ<0, ∴sin θcos θ=√23.
答案:A
5化简sin 2α+sin 2β-sin 2αcos 2β-sin 2αsin 2β的结果为 .
解析:原式=(sin 2α-sin 2αcos 2β)+(sin 2β-sin 2αsin 2β)=sin 2α(1-cos 2β)+sin 2β(1-
sin 2α)=sin 2αsin 2β+sin 2βcos 2α=sin 2β(sin 2α+cos 2α)=sin 2β.
答案:sin 2β
6已知关于x 的方程4x 2-2(m+1)x+m=0的两个根恰好是一个直角三角形的一个锐角的正、余弦,则实数m 的值为 .
答案:√3
7已知sin θ=a sin φ,tan θ=b tan φ,其中θ为锐角,求证:cos θ=√a 2-1
b 2-1.
证明由题意知a =sinθsinφ,b =tanθtanφ=sinθcosφcosθsinφ
. 右边=√sin 2θsin 2φ-1sin 2θcos 2φcos 2θsin 2φ-1=√sin 2θ-sin 2φsin 2φsin 2θcos 2φ-cos 2θsin 2φcos 2θsin 2φ
, 整理,得
右边=√
sin 2θ-sin 2φsin 2φ·cos 2θsin 2φsin 2θ-sin 2φ=|cos θ|. 因为θ为锐角,所以右边=cos θ=左边.
★8已知sin α+cos α=13,其中0<α<π,求sin α−cos α的值.
解∵sin α+cos α=13,。