山东大学信号与系统第四章习题
- 格式:doc
- 大小:139.00 KB
- 文档页数:4
第一章习题新闻来源:山东大学信息学院点击数:707 更新时间:2009-4-5 0:13 1—1 画出下列各函数的波形图。
(1)(2)(3)(4)1—2 写出图1各波形的数学表达式图1(1) (2)(3) 全波余弦整流(4) 函数1—3 求下列函数的值。
(1)(2)(3)(4)(5)1—4 已知,求,。
1—5 设,分别是连续信号的偶分量和奇分量,试证明1—6 若记,分别是因果信号的奇分量和偶分量,试证明,1—7 已知信号的波形如图2所示,试画出下列函数的波形。
(1)(2)图 21—8 以知的波形如图3所示,试画出的波形.图31—9 求下列各函数式的卷积积分。
(1),(2),1—10 已知试画出的波形并求。
1—11 给定某线性非时变连续系统,有非零初始状态。
已知当激励为时,系统的响应为时,系统的响应则为。
试求当初始状态保持不变,而激励为时的系统响1—12 设和分别为各系统的激励和响应,试根据下列的输入—输出关系,确定下列各⑴⑵(3)(4)第一章习题答案新闻来源:山东大学信息学院点击数:623 更新时间:2009-4-5 23:181-1 (1)(2)(3)(4)1-2(1)、(2)、或或(3)(4) =1-3(1)(2)(3)(4)(5)01-4 ,1-7 (1)(2)1-81-9(1)(2)1-101-111-12 (1)非线性、时不变系统。
(2)线性、时变系统。
(3)线性、时不变系统。
(4)线性、时变系统。
上一篇:没有上一篇资讯了下一篇:没有下一篇资讯了第二章习题新闻来源:山东大学信息学院点击数:412 更新时间:2009-4-9 22—1 已知给定系统的齐次方程是,分别对以下几种初始状态求解系1),2),3),2—2 已知系统的微分方程是当激励信号时,系统的全响应是,试确定系统的零输入2—3 已知系统的微分方程是该系统的初始状态为零。
1)若激励,求响应。
2)若在时再加入激励信号,使得时,,求系数。
《信号与系统》第四章习题参考答案4-1 解 (1)111()ataL es s a s s a -⎡⎤-=-=⎣⎦++ (2)[]2221221sin 2cos 111s s L t t s s s ++=+++++ (3)()2212tL te s -⎡⎤=⎣⎦+(4)[]21sin(2)4L t s =+,由S 域平移性质,得 ()21s i n (2)14tL e t s -⎡⎤=⎣⎦++ (5)因为1!nn n L t s +⎡⎤=⎣⎦,所以 []2211212s L t s s s++=+= 由S 域平移性质,得 ()()23121ts L t e s -+⎡⎤+=⎣⎦+(6)()2211cos sL at s s a -=-⎡⎤⎣⎦+,由S 域平移性质,得 (){}()2211cos ts L at e s s aβββ-⎡⎤-=-⎣⎦+++ (7)232222L t t s s ⎡⎤+=+⎣⎦ (8)732()327tL t es δ-⎡⎤-=-⎣⎦+ (9)[]22sinh()L t s βββ=-,由S 域平移性质,得()22sinh()atL e t s a βββ-⎡⎤=⎣⎦+-(10)由于()211cos ()cos 222t t Ω=+Ω 所以 222221111c o s ()22424ss L t s s s s ⎛⎫⎡⎤Ω=+∙=+ ⎪⎣⎦+Ω+Ω⎝⎭(11)()()()11111at t L e e a a s a s s a s βββββ--⎡⎤⎛⎫-=-= ⎪⎢⎥--++++⎣⎦⎝⎭ (12)由于()221cos()1ts L e t s ωω-+⎡⎤=⎣⎦++所以 ()()()221cos()1a t a s e L et s ωω--++⎡⎤=⎣⎦++(13)因为(2)(1)(1)(1)(1)(1)t t t te u t e t e e u t ------⎡⎤-=-+-⎣⎦且()(1)(1)2(1)(1)(1)11sst t e e L t eu t L eu t s s ------⎡⎤⎡⎤--=-=⎣⎦⎣⎦++所以 ()(1)(2)2211(2)(1)(1)11s t s s e L teu t e e s s s -----⎡⎤+⎡⎤-=+=⎢⎥⎣⎦+++⎣⎦(14)()(1)tL e f t F s -⎡⎤=+⎣⎦,由尺度变换性质,得(1)ta t L e f aF as a -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎣⎦(15)()t L f aF as a ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦,再由s 域平移性质,得 []2()()at t L e f aF a s a aF as a a -⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦(16)31cos(6)cos (3)cos(3)2t t t -=∙13cos(9)cos(3)44t t =+32213cos (3)48149s s L t s s ⎡⎤=+⎣⎦++由s 域微分性质,得()()22322222213181327cos (3)481494819d s s s s L t t ds s s s s ⎡⎤--⎛⎫⎢⎥⎡⎤=-+=+ ⎪⎣⎦⎢⎥++⎝⎭++⎣⎦(17)[]2cos(2)4sL t s =+,连续两次应用s 域微分性质,有 []()2224cos(2)4s L t t s-=+,()3232224cos(2)4s sL t t s-⎡⎤=⎣⎦+(18)111atL es s a -⎡⎤-=-⎣⎦+,由s 域积分性质,得111111(1)at sL e ds t s s a ∞-⎛⎫⎡⎤-=- ⎪⎢⎥+⎣⎦⎝⎭⎰ln()ln ln s s a s s a ⎛⎫=+-=- ⎪+⎝⎭ (19)351135tt L ee s s --⎡⎤-=-⎣⎦++,由s 域积分性质,得 33111115ln 353t t s e e s L ds t s s s --∞⎛⎫⎡⎤-+⎛⎫=-= ⎪ ⎪⎢⎥+++⎝⎭⎣⎦⎝⎭⎰(20)()22sin aL at s a =⎡⎤⎣⎦+,由s 域积分性质,得()1122211sin 1arctan 21s s at s a s L ds d t s a a a s a π∞∞⎡⎤⎛⎫⎛⎫===-⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎛⎫⎣⎦+ ⎪⎝⎭⎰⎰ 4-2 解(1)因为()()sin ()2T f t t u t u t ω⎡⎤⎛⎫=--⎪⎢⎥⎝⎭⎣⎦()sin ()sin 22T T t u t t u t ωω⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以可借助延时定理,得()()sin ()sin 22T T L f t L t u t L t u t ωω⎧⎫⎡⎤⎛⎫⎛⎫=+--⎡⎤⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎣⎦⎩⎭222222221sT T s ee S S S ωωωωωω--⎛⎫=+=+ ⎪+++⎝⎭(2)因为()()()sin sin cos cos sin t t t ωϕωϕωϕ+=+ 所以()222222cos sin cos sin sin s s L t s s s ωϕϕωϕϕωϕωωω++=+=⎡⎤⎣⎦+++ 4-3 解此题可巧妙运用延时性质。
第4章 拉普拉斯变换与连续系统复频域分析4.1 学习要求(1)深刻理解拉普拉斯变换的定义、收敛域及基本性质;会根据定义和性质求常用信号的拉普拉斯变换;(2)正确理解拉普拉斯变换的时移、频移、时域微分、频域积分、初值定理、终值定理等性质及其应用条件;(3)能应用部分分式法和常用的拉普拉斯变换对求解拉普拉斯反变换;(4)掌握复频域方法分析线性时不变系统,求解系统的全响应、零输入响应、零状态响应和单位冲激响应;(5)正确理解复频域法中,输入、系统状态与响应的关系,理解复频域方法与频域方法的异同点和各自的优缺点;(6)掌握系统的零极点分析。
4.2 本章重点(1)单边拉普拉斯变换的定义和收敛域; (2)单边拉普拉斯变换及逆变换的计算;(3)单边拉普拉斯变换的性质及常用变换对的综合应用; (4)线性时不变系统的复频域分析方法;(5)系统函数与零极点的概念及s 域系统特性分析; (4))(s H 与系统稳定性;4.3 本章的内容摘要4.3.1拉普拉斯变换(1)单边拉普拉斯变换的定义正变换 0()()st X s x t e dt -∞-==⎰逆变换 1()()2j st j x t X s e ds j σσπ+∞-∞=⎰式中,0ωσj s +=。
(2)收敛域把使信号()x t 的拉氏变换存在的s 值的范围称为()X s 的收敛域(Region of Convergence ),缩写为ROC ,可以用下面极限表示:0)(lim =-∞→t t e t x σ 0σσ>上式表明,极限在0σσ>条件下为零,在S 平面上0σσ>就是收敛域。
0σ称为收敛坐标,通过0σ的垂直线是收敛域的边界,称为收敛轴。
如图4-1所示。
图4.1 s平面中的收敛域(3)常见函数的拉普拉斯变换如表4-1所示。
4.3.2 拉普拉斯变换的性质如表4-2所示。
4.3.3拉普拉斯逆变换求()X s 的逆变换就是求一个复变函数积分,直接积分要熟悉复变函数理论,一般是比较困难的。
第4章拉普拉斯变换与连续系统复频域分析4.6本章习题全解4.1 求下列函数的拉普拉斯变换(注意:为变量,其它参数为常量)。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18) ()(19)(20)(21)(22)(23)(24)4.2 已知,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)所以4.3 已知信号的拉普拉斯变换如下,求其逆变换的初值和终值。
(1)(2)(3)(4)解(1)初值:终值:(2)初值:终值:(3)初值:终值:(4)初值:终值:4.4 求题图4.4所示信号的单边拉普拉斯变换。
题图4.4解(1)所以根据微分性质所以注:该小题也可根据定义求解,可查看(5)小题(2)根据定义(3)根据(1)小题的结果再根据时移性质所以根据微分性质得(4)根据定义注:也可根据分部积分直接求取(5)根据单边拉氏变换的定义,本小题与(1)小题的结果一致。
(6)根据单边拉氏变换的定义,在是,对比(3)小题,可得4.5 已知为因果信号,,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)解:(1)根据尺度性质再根据s域平移性质(2)根据尺度性质根据s域微分性质根据时移性质(3)根据尺度性质再根据s域平移性质(4)根据时移性质再根据尺度性质本小题也可先尺度变化得到,再时移单位,得到结果4.6 求下列函数的拉普拉斯逆变换。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14){} =(15){} =(16){}=(17){}=(18){}=(19){}=(20){}=(21){}=(22){}=(23) {}=(24) ()=4.7 求如题图4.7所示的单边周期信号的拉普拉斯变换。
第四章习题
4—1 试求下列信号的拉普拉斯变换。
(1)(2)
(3)(4)
4—2 试求下列像函数的拉普拉斯逆变换。
(1)(2)
(3)(4)
4—3 如图1所示电路,在前已处于稳定状态。
开关于时由1闭合到2。
求图中的。
图1
4—4 一个因果线性时不变系统
(1)对所有,该系统的输入;对所有,输出;
(2)冲激响应满足微分方程
求及其收敛域,并确定常数。
4—5 有一个系统,对该系统已知激励的拉普拉斯变换
且,零状态响应的时域表达式为
(1)确定系统的传输函数和它的收敛域;
(2)确定单位冲激响应;
(3)当,利用(1)的结果求。
4—6 在图2中,已知元件参数,初始状态
,输入为单位阶跃电流,试求该系统的响应电压。
图2
4—7 已知某系统函数的零、极点分布如图3所示,若冲激响应的初始值,激
励信号,求该系统的稳态响应。
图3
4—8 系统如图4所示,假定图中运算放大器的输入阻抗为,输出阻抗为零,起始不储能。
(1)写出系统传输函数。
(2)为了使系统稳定,求放大系数的取值范围。
图4
4—9 有一反馈系统如图5所示,其中为反馈系数,问为何值时系统稳定。
图5
4—10 一个系统,其传输函数有如图6所示的零极点。
(1)指出该零极点分布图有几种可能的收敛域。
(2)对每一种可能的收敛域,确定相随应的系统是否稳定,是否因果。
图6
4—11 一个系统的传输函数为,如果是的逆系统传输函数,
(1)试确定与之间的关系;
(2)图7是稳定因果系统的零极点图,如果其逆系统是稳定的,求其冲激响应。
图7
第四章习题答案
4-1 (1)(2)
(3)(4)
4-2 (1)(2)
(3)(4)
4-3
4-4 ,,
4-5 (1),
(2)(3)
4-6
4-7
4-8 (1)(2)时系统稳定。
4-9 时系统稳定。
4-10 (1)其可能收敛域有4种。
(2):非因果,不稳定;
:非因果,不稳定;
:非因果,稳定;
:因果,不稳定。
4-11 (1)(2)。