离散数学试卷及答案1
- 格式:doc
- 大小:1.25 MB
- 文档页数:8
一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A — B={3};ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2。
设有限集合A,|A| = n, 则|ρ(A×A)| = 22n。
3。
设集合A = {a,b},B = {1,2},则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2),(b,1)},其中双射的是α3,α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合,A= {1,2,4}, B = {3,4},则从A⋂B={4};A⋃B={1,2,3,4};A-B={1,2}.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性,对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1,0,0), (1,0, 1),(1,1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)},R2 = {(2,1),(3,2),(4,3)},则R1•R2 ={(1,3),(2,2),(3,1)} ,R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10。
设有限集A, B,|A| = m,|B|= n, 则||ρ(A⨯B)|.11设A,B,R是三个集合,其中R是实数集,A = {x |—1≤x≤1, x∈R}, B = {x |0≤x < 2,x∈R},则A-B = -1<=x〈0 ,B-A = {x |1 < x < 2,x∈R},A∩B ={x |0≤x≤1,x∈R},。
离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
大学离散数学试卷一及答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是[ C ]。
A.7能被3整除.B.5是素数当且仅当太阳从西边升起.C.x加7小于0.D.华东交通大学位于南昌北区.2. 设p:王平努力学习,q:王平取得好成绩,命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为[ D ]。
A. p→qB. ⌝p→qC. ⌝q→pD. q→p3. 下面4个推理定律中,不正确的为[ D ]。
A.A=>(A∨B) (附加律)B. (A∨B)∧⌝A=>B (析取三段论)C. (A→B)∧A=>B (假言推理)D. (A→B)∧⌝B=>A (拒取式)4. 设解释I如下,个体域D={1,2},F(1,1)=(2,2)=0,F(1,2)=F(2,1)=1,在解释I下,下列公式中真值为1的是[ A ]。
A.∀x ∃yF(x,y)B. ∃x∀yF(x,y)C. ∀x∀yF(x,y)D. ⌝∃x∃yF(x,y)5. 下列四个命题中哪一个为真?[ D ]。
A. ∅∈∅B. ∅∈{a}C. ∅∈{{∅}}D. ∅⊆∅6. 设S={a,b,c,d},R={<a,a>,<b,b>,<d,d>},则R的性质是[ B ]。
A.自反、对称、传递的B. 对称、反对称、传递的C.自反、对称、反对称的D. 只有对称性7.设A={a,b,c},则下列是集合A的划分的是[ D ]。
A.{{b,c},{c}}B.{{a,b},{a,c}}C.{{a,b},c}D.{{a},{b,c}}8. 设集合})关于普通数的乘法,不正确的有[ C ]。
ab+=aQ∈2,{)2(QbA. 结合律成立B. 有幺元C. 任意元素有逆元D. 交换律成立9.设A是非空集合,P(A)是A的幂集,∩是集合交运算,则代数系统〈P(A),∩〉的幺元是[ C ]。
A. P(A)B. φC. AD. E10.下列四组数据中,不能成为任何4阶无向简单图的度数序列的为[ C ]。
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有()个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st spR=∈=则P(A)/ R=()<A∧>)(||||}s({t,,|A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
一、填空 20% (每小题2分)
1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则
=⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则
)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为
则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为
则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:
那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件______。
二、选择 20% (每小题 2分)
1、下列是真命题的有( ) A . }}{{}{a a ⊆;
B .}}{,{}}{{ΦΦ∈Φ;
C . }},{{ΦΦ∈Φ;
D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )
A .{4,3}Φ⋃;
B .{Φ,3,4};
C .{4,Φ,3,3};
D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ; B . 32 ; C . 3
32
⨯; D . 2
23
⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的;
R 是传递的。
D.若R,S 是传递的,则S
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下
R=
t s
p
t s
>
=则P(A)/ R=()
<
A
∈
∧
)
(|
||
|}
s
(
{t
,
,
|
A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}
6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()
7、下列函数是双射的为()
A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;
C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
(注:I—整数集,E—偶数集,N—自然数集,R—实数集)
8、图中从v1到v3长度为3 的通路有()条。
A.0;B.1;C.2;D.3。
9、下图中既不是Eular图,也不是Hamilton图的图是()
10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结
点。
A .1;
B .2;
C .3;
D .4 。
三、证明 26%
1.R 是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当
< a, b> 和<a , c>在R 中有<.b , c>在R 中。
(8分)
2.设函数B A f →:,C B g →:,若f g 是满射的,则g 是满射的。
3.G=<V , E> (|V| = v ,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则
2
)
2(--≤
k v k e , 由此证明彼得森图(Peterson )图是非平面图。
(11分)
四、逻辑推演 16%
用CP 规则证明下题(每小题 8分) 1、F A F E D D C B A →⇒→∨∧→∨, 2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀
五、计算 18%
1、设集合A={a ,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R 的传递闭包t (R)。
(9分)
2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
(9分)
一、填空 20% (每小题2分)
1、{0,1,2,3,4,6};
2、A C B -⊕)( ;
3、1;
4、)()(R S P R S P ∨⌝∨⌝∧∨∨⌝;
5、1;
6、{<1,1>, <1,3>, <
<2,4> };7、{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>}
I A ;8、
9、a ;a , b , c ,d ;a , d , c , d ;10、63-≤n m ;
二、选择 20% (每小题 2分)
三、证明 26%
1、 证:
“⇒” X c b a ∈∀,, 若R >c ,a <,>b ,a <∈ 由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得 >
c ,b <“⇐” 若R >b ,a <∈,R >c ,a <∈ 有 R >c ,b <∈ 任意 X
b a ∈,,因R >a ,a <∈ 若R
>b ,a <∈R >a ,b < ∈∴ 所以R 是对称的。
若R >b ,a <∈,R >c b,<∈ 则 R c b, R >a b,<>∈<∧∈ R >c ,a < ∈∴ 即R 是传递的。
2、证明:C A f g →: ,C c ∈∀,∵f g 是满射,∴A a ∈∃,使
c a f g a f g ==))(()( ,令 B a f b ∈=)(,则 c b g =)(,
∴C B g →:是满射。
3、 证:
①设G 有r 个面,则rk F d e
r
i i ≥=∑=1
)(2,即 k e r 2≤。
而 2=+-r e v 故k
e e v r e v 22+-≤+-= 即2
)2(--≤
k v k e 。
(8分)
②彼得森图为10,15,5===v e k ,这样2
)
2(--≤
k v k e 不成立,
所以彼得森图非平面图。
(3分)
4、 逻辑推演 16%
a)
证明:
①
A
P (附加前提)
②
B A ∨
T ①I
③
D C B A ∧→∨
P
④D C ∧
T ②③I
⑤D
T ④I
⑥E D ∨
T ⑤I
⑦F E D →∨
P
⑧F
T ⑥⑦I
⑨
F A →
CP
2、证明
①)(x xP ∀
P (附加前提)
②)(c P
US ①
③))()((x Q x P x →∀
P
④)()(c Q c P →
US ③
⑤)(c Q
T ②④I
⑥)(x xQ ∀
UG ⑤
⑦)()(x xQ x xP ∀→∀
CP
5、 计算 18%
a)
解:
⎪⎪⎪⎪⎪⎭⎫
⎝
⎛=00
00100001010010R M , ⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛==00
000000101001
012R R R M M M ⎪⎪⎪⎪⎪⎭
⎫
⎝
⎛==000000000101
1010
2
3R R R M M M ,⎪⎪⎪⎪⎪⎭⎫
⎝
⎛==00
0000001010
0101
3
4R R R M M M ⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛=+++=00
001000111111
11432)(R R R R R t M M M M M ∴
t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > ,
< b , d > , < c , d > }
b) 解: 用库斯克(Kruskal )算法求产生的最优树。
算法略。
结果如图:
树权C(T)=23+1+4+9+3+17=57即为总造价。