(9)对数与对数函数
- 格式:doc
- 大小:217.50 KB
- 文档页数:7
第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
学习资料分享[公司地址]2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法Nx a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln .3.对数与指数的关系当0>a ,且1≠a 时,N x N a a x log =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且;(3))1,0(1log ≠>=a a a a 且.【知识点2对数的运算性质】1.运算性质条件0>a ,且1≠a ,0,0>>N M 性质NM MN a a a log log )(log +=N M NM a a a log log log -=M n M a n a log log =(n ∈R)2.换底公式ab bc c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅ac b c b a ;③b b a n a n log log =;④b n m b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是()A .(﹣∞,5)B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.3有意义,则实数t的取值范围是()【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【分析】根据对数式log(t﹣2)3有意义,【答案】解:要使对数式log(t﹣2)须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.(x+1)中,要使式子有意义,x的取值范围为()【变式1-2】在M=log(x﹣3)A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.a+log(c﹣b)a=2log 【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a•log(c﹣b)a.(c+b)a=,log(c﹣b)a=证明左端=右【分析】依题意,利用对数换底公式log(c+b)端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+===a•log(c﹣b)a.=2log(c+b)∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
对数公式及对数函数的总结对数是数学中的一个重要概念。
如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。
其中a称为底数,N称为真数。
负数和零没有对数。
对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。
常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。
自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。
它的定义域为正实数集,值域为实数集。
对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。
当x=1时,y=0.对数函数既非奇函数也非偶函数。
对数公式在数学中有广泛的应用。
例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。
还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。
在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。
总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。
4、已知a>b>c,那么a>b>c。
3、设a=log3π,b=log23,c=log32,则a>b>c。
2、如果a>b>logc1,那么B选项___c。
5、如果a>1,且a-x-logaxy。
1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。
高考数学一轮复习考点知识专题讲解对数与对数函数考点要求1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y =a x 与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识梳理 1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 以10为底的对数叫做常用对数,记作lg N . 以e 为底的对数叫做自然对数,记作ln N . 2.对数的性质与运算性质(1)对数的性质:log a 1=0,log a a =1,log a N a =N (a >0,且a ≠1,N >0). (2)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R ).(3)换底公式:log a b =log c blog c a(a >0,且a ≠1,b >0,c >0,且c ≠1). 3.对数函数的图象与性质y =log a x a >1 0<a <1图象定义域 (0,+∞)值域R性质过定点(1,0),即x =1时,y =0当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0 在(0,+∞)上是增函数 在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 常用结论1.log a b ·log b a =1,log nm b a =nmlog a b . 2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0且a ≠1)的图象恒过点(1,0),(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.(×) (3)函数y =log a 1+x1-x 与函数y =ln(1+x )-ln(1-x )是同一个函数.(×)(4)函数y =log 2x 与y =121log x的图象重合.(√) 教材改编题1.函数y =log a (x -2)+2(a >0且a ≠1)的图象恒过定点. 答案(3,2) 解析∵log a 1=0, 令x -2=1,∴x =3, ∴y =log a 1+2=2,∴原函数的图象恒过定点(3,2). 2.计算:(log 29)·(log 34)=. 答案4解析(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4. 3.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =. 答案12或2解析当a >1时,log a 4-log a 2=log a 2=1, ∴a =2;当0<a <1时,log a 2-log a 4=-log a 2=1, ∴a =12,综上有a =12或2.题型一 对数式的运算例1(1)设2a =5b =m ,且1a +1b=2,则m 等于()A.10B .10C .20D .100 答案A解析2a =5b =m , ∴log 2m =a ,log 5m =b ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5 =log m 10=2, ∴m 2=10,∴m =10(舍m =-10). (2)计算:log 535+212log 2-log 5150-log 514=. 答案2解析原式=log 535-log 5150-log 514+12log (2)2=log 535150×14+12log 2=log 5125-1=log 553-1=3-1=2. 教师备选计算:(1-log 63)2+log 62·log 618log 64=.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1(1)已知a >b >1,若log a b +log b a =52,a b =b a ,则a +b =.答案6解析设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2.又a b =b a , 所以b 2b=2b b ,即2b =b 2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)计算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.题型二对数函数的图象及应用例2(1)已知函数f(x)=log a(2x+b-1)(a>0,且a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1答案A解析由函数图象可知,f(x)为增函数,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,解得1a<b<1.综上有0<1a<b<1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为.答案⎝⎛⎦⎥⎤0,22解析若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 教师备选已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,则1e x +ln x 2的值为() A .e 2+ln2B .e +ln2 C .2D .4 答案C解析根据题意,已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,函数f (x )=e x +x -2的零点为函数y =e x 的图象与y =2-x 的图象的交点的横坐标, 则两个函数图象的交点为(x 1,1e x ),函数g (x )=ln x +x -2的零点为函数y =ln x 的图象与y =2-x 的图象的交点的横坐标,则两个函数图象的交点为(x2,ln x2),又由函数y=e x与函数y=ln x互为反函数,其图象关于直线y=x对称,而直线y=2-x也关于直线y=x对称,则点(x1,1e x)和(x2,ln x2)也关于直线y=x对称,则有x1=ln x2,则有1e x+ln x2=1e x+x1=2.思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练2(1)已知函数f(x)=log a x+b的图象如图所示,那么函数g(x)=a x+b的图象可能为()答案D解析结合已知函数的图象可知,f (1)=b <-1,a >1,则g (x )单调递增,且g (0)=b +1<0,故D 符合题意.(2)(2022·西安调研)设x 1,x 2,x 3均为实数,且1e x -=ln x 1,2e x -=ln(x 2+1),3e x -=lg x 3,则()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 3<x 1D .x 2<x 1<x 3 答案D解析画出函数y =⎝ ⎛⎭⎪⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示.数形结合,知x 2<x 1<x 3.题型三 对数函数的性质及应用 命题点1比较指数式、对数式大小 例3(1)设a =log 3e ,b =e 1.5,c =131log 4,则() A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案D 解析c =131log 4=log 34>log 3e =a . 又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2022·昆明一中月考)设a =log 63,b =log 126,c =log 2412,则() A .b <c <a B .a <c <b C .a <b <c D .c <b <a 答案C解析因为a ,b ,c 都是正数, 所以1a=log 36=1+log 32,1b =log 612=1+log 62,1c=log 1224=1+log 122,因为log 32=lg2lg3, log 62=lg2lg6,log 122=lg2lg12,且lg3<lg6<lg12,所以log 32>log 62>log 122, 即1a >1b >1c,所以a <b <c .命题点2解对数方程不等式例4若log a (a +1)<log a (2a )<0(a >0,a ≠1),则实数a 的取值范围是. 答案⎝ ⎛⎭⎪⎫14,1解析依题意log a (a +1)<log a (2a )<log a 1, ∴⎩⎨⎧a >1,a +1<2a <1或⎩⎨⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3对数性质的应用 例5已知函数f (x )=ln 2x +12x -1,下列说法正确的是________.(填序号) ①f (x )为奇函数; ②f (x )为偶函数;③f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减;④f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递增.答案①③解析f (x )=ln 2x +12x -1,令2x +12x -1>0,解得x >12或x <-12,∴f (x )的定义域为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞, 又f (-x )=ln-2x +1-2x -1=ln2x -12x +1=ln ⎝⎛⎭⎪⎫2x +12x -1-1=-ln2x +12x -1=-f (x ),∴f (x )为奇函数,故①正确,②错误; 又f (x )=ln2x +12x -1=ln ⎝⎛⎭⎪⎫1+22x -1, 令t =1+22x -1,t >0且t ≠1,∴y =ln t , 又t =1+22x -1在⎝ ⎛⎭⎪⎫12,+∞上单调递减, 且y =ln t 为增函数,∴f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减,故③正确;又f (x )为奇函数,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,故④不正确.教师备选1.(2022·安徽十校联盟联考)已知a =log 23,b =2log 53,c =13log 2,则a ,b ,c 的大小关系为() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案B解析∵a =log 23>1,b =2log 53=log 59>1,c =13log 2<0,∴a b =log 23log 59=lg3lg2×lg5lg9=lg3lg2×lg52lg3=lg52lg2=lg5lg4=log 45>1,∴a >b ,∴a >b >c .2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为() A .[1,2) B .[1,2]C .[1,+∞) D.[2,+∞) 答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减, 则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是() A .a <b <c B .b <a <c C .c <b <a D .a <c <b 答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.(2)若函数f (x )=⎩⎨⎧log a x ,x ≥2,-log a x -4,0<x <2存在最大值,则实数a 的取值范围是.答案⎝⎛⎦⎥⎤0,22解析当a >1时,函数f (x )=log a x 在[2,+∞)上单调递增,无最值,不满足题意, 故0<a <1.当x ≥2时,函数f (x )=log a x 在[2,+∞)上单调递减,f (x )≤f (2)=log a 2; 当0<x <2时,f (x )=-log a x -4在(0,2)上单调递增,f (x )<f (2)=-log a 2-4, 则log a 2≥-log a 2-4,即log a 2≥-2=log a a -2, 即1a 2≥2,0<a ≤22, 故实数a 的取值范围是⎝⎛⎦⎥⎤0,22.课时精练1.(2022·重庆巴蜀中学月考)设a =12,b =log 75,c =log 87,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b 答案D解析a =12=log 77>b =log 75,c =log 87>log 88=12=a , 所以c >a >b .2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数且f (2)=1,则f (x )等于() A .log 2x B.12x C .12log x D .2x -2答案A解析函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.3.函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①②B.①④C.②③D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y=0得log a(x+c)=0,x+c=1,x=1-c,由图象知0<1-c<1,∴0<c<1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m2)表示,但在实际测量时,声音的强度水平常用L1=10lg II0 (单位:分贝,L1≥0,其中I0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I的取值范围是()A .(-∞,10-7)B .[10-12,10-5)C .[10-12,10-7)D .(-∞,10-5) 答案C解析由题意可得,0≤10·lg II 0<50, 即0≤lg I -lg(1×10-12)<5, 所以-12≤lg I <-7, 解得10-12≤I <10-7,所以声音强度I 的取值范围是[10-12,10-7). 5.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log (-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案C解析由题意得⎩⎪⎨⎪⎧ a >0,log 2a >12log a或⎩⎪⎨⎪⎧a <0,12log (-a )>log 2(-a ),解得a >1或-1<a <0.6.(2022·汉中模拟)已知log 23=a ,3b =7,则log 2156等于()A.ab+3a+abB.3a+ba+abC.ab+3a+bD.b+3a+ab答案A解析由3b=7,可得log37=b,所以log2156=log3(7×23)log3(3×7)=log37+log323log33+log37=b+3×1a1+b=ab+3a+ab.7.(2022·海口模拟)log327+lg25+lg4+7log27+13(8)-的值等于.答案7 2解析原式=log3323+lg52+lg22+2+133(2)⨯-=32+2lg5+2lg2+2+(-2)=32+2(lg5+lg2)+2+(-2)=32+2+2+(-2)=7 2 .8.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是.答案(4,-1)解析令x -3=1,则x =4, ∴y =log a 1-1=-1, 故点P 的坐标为(4,-1).9.设f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212. (1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值. 解(1)因为f (x )=log 2(a x-b x), 且f (1)=1,f (2)=log 212, 所以⎩⎨⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212,即⎩⎨⎧a -b =2,a 2-b 2=12,解得a =4,b =2.(2)由(1)得f (x )=log 2(4x -2x ), 令t =4x -2x ,则t =4x -2x =⎝ ⎛⎭⎪⎫2x -122-14,因为1≤x ≤2,所以2≤2x ≤4, 所以94≤⎝ ⎛⎭⎪⎫2x -122≤494,即2≤t ≤12,因为y =log 2t 在[2,12]上单调递增, 所以y max =log 212=2+log 23, 即函数f (x )的最大值为2+log 23.10.(2022·枣庄模拟)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)判断f (x )的奇偶性并予以证明;(2)当a >1时,求使f (x )>0的x 的解集. 解(1)f (x )是奇函数,证明如下: 因为f (x )=log a (x +1)-log a (1-x ), 所以⎩⎨⎧x +1>0,1-x >0,解得-1<x <1,f (x )的定义域为(-1,1).f (-x )=log a (-x +1)-log a (1+x ) =-[log a (1+x )-log a (-x +1)]=-f (x ), 故f (x )是奇函数.(2)因为当a >1时,y =log a (x +1)是增函数,y =log a (1-x )是减函数,所以当a >1时,f (x )在定义域(-1,1)内是增函数,f (x )>0即log a (x +1)-log a (1-x )>0, log a x +11-x >0,x +11-x >1,2x 1-x >0,2x (1-x )>0,解得0<x <1, 故使f (x )>0的x 的解集为(0,1).11.设a =log 0.20.3,b =log 20.3,则() A .a +b <ab <0B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.12.若实数x ,y ,z 互不相等,且满足2x =3y =log 4z ,则() A .z >x >y B .z >y >x C .x >y ,x >z D .z >x ,z >y 答案D解析设2x =3y =log 4z =k >0, 则x =log 2k ,y =log 3k ,z =4k , 根据指数、对数函数图象易得4k >log 2k , 4k >log 3k ,即z >x ,z >y .13.函数f (x )=log 2x ·2x )的最小值为. 答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.14.已知函数f(x)=|log2x|,实数a,b满足0<a<b,且f(a)=f(b),则a+b的取值范围是________.答案(2,+∞)解析∵f(x)=|log2x|,∴f(x)的图象如图所示,又f(a)=f(b)且0<a<b,∴0<a<1,b>1且ab=1,∴a+b≥2ab=2,当且仅当a=b时取等号.又0<a<b,故a+b>2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3ba=f(a),=3a+log3∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,(2x-4)>2,得log2得2x-4>4,得2x>8,解得x>3.故不等式f(x)>2的解集是(3,+∞).(2)因为函数f(x)=log2(2x+k)(k∈R)的图象过点P(0,1),所以f(0)=1,即log(1+k)=1,2解得k=1.所以f(x)=log2(2x+1).因为关于x的方程f(x)=x-2m有实根,(2x+1)=x-2m有实根.即log2所以方程-2m=log2(2x+1)-x有实根.令g(x)=log2(2x+1)-x,则g (x )=log 2(2x+1)-x=log 2(2x +1)-log 22x=log 22x+12x =log 2⎝ ⎛⎭⎪⎫1+12x .因为1+12x >1,log 2⎝ ⎛⎭⎪⎫1+12x >0,所以g (x )的值域为(0,+∞). 所以-2m >0,解得m <0.所以实数m 的取值范围是(-∞,0).。
课时作业(九) 对数与对数函数 基础过关组 一、单项选择题1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2)C .[23,+∞)D .(23,+∞)解析 由Error!即Error!解得x ≥23。
答案 C2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12xC .log 12x D .2x -2解析 由题意知f (x )=log a x (a >0且a ≠1),因为f (2)=1,所以log a 2=1,所以a =2。
所以f (x )=log 2x 。
故选A 。
答案 A3.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A .116B .19C .18D .16解析 解法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19。
故选B 。
解法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a =3-2=132=19。
故选B 。
解法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2 =3,两边同时平方得4a =9,所以4-a =14a =19。
故选B 。
解法四:因为a log 34=2,所以a =2log 34=log 39log 34=log 49,4a =9,所以4-a =14a =19。
故选B 。
答案 B4.如果log12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析 因为log 12x <log 12y <log 121,所以x >y >1。
对数与对数函数对数的概念如果a(a>0,a≠1)的b次幂等于N,即a b=N,那么数b叫作以a为底N的对数,记作log a N=b,其中__a__叫作对数的底数,__N__叫作真数对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M (n∈R);④log am M n=nm log a M(m,n∈R,且m≠0).(2)对数的性质:①a log a N=__N__;②log a a N=__N__(a>0且a≠1)(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.对数函数的图像与性质:反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图像关于直线__y=x__对称.一、选择题设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析∵y=log2x在(0,+∞)上单调递增,∴当a>b>1时,有log2a>log2b>log21=0;当log2a>log2b>0=log21时,有a>b>1.已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>c C.a<b<c D.a>b>c解析∵a=log23+log23=log233=32log23>1,b=log29-log23=log233=a,c=log32<log33=1设a=log36,b=log510,c=log714,则()A.c>b>aB.b>c>aC.a>c>bD.a>b>c解析由对数运算法则得a=log36=1+log32,b=1+log52,c=1+log72,由对数函数图像得log32>log52>log72,所以a>b>c,故选D设a=0.50.5,b=0.30.5,c=log0.30.2,则a,b,c的大小关系是()A.c<b<aB.a<b<cC.b<a<cD.a<c<b解析根据幂函数y=x0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b<a<1;根据对数函数y=log0.3x的单调性,可得log0.30.2>log0.30.3=1,即c>1,∴b<a<c.设a=log2π,b=log12π,c=π-2,则()A.a>b>cB.b>a>cC.a>c>bD.c>b>a解析∵a=log2π>log22=1,b=log12π=log21π<log21=0,0<c=1π2<1,∴b<c<a.已知x,y,z都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m的值为()A.160 B.60 C.2003 D.320解析由已知得log m(xyz)=log m x+log m y+log m z=112,而log m x=124,log m y=140,故log m z=112-log m x-log m y=112-124-140=160,即log z m=60.已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A.d =ac B.a =cd C.c =ad D.d =a +c解析 log 5b =a ,lg b =c ,log 5b lg b =a c ,log 510=a c ,∵5d=10,∴log 510=d ,∴d =a c ,cd =a ,故选B若log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A.(0,1)B.(0,12)C.(12,1) D.(0,1)∪(1,+∞) 解析 由题意得a >0,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,∴0<a <1, 同时2a >1,∴a >12,综上,a ∈(12,1).当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C.(1,2) D.(2,2)解析 ∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12, x =12,则有412=2,log 1212=1,显然4x <log a x 不成立,排除选项A.若()f x =⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)解析 作出f (x )的大致图像(图略).由图像知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c ,由图知10<c <12,∴abc ∈(10,12)设2a =5b =m ,且1a +1b =2,则m 等于( )A.10B.10C.20D.100解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2,∴m =10已知函数()f x =⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则()()1f f +31log 2f ⎛⎫ ⎪⎝⎭的值是( )A .5B .3C .-1 D.72 解析 由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝ ⎛⎭⎪⎫log 312=+1=3log32+1=2+1=3,∴f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5.函数y =2log 4(1-x )的图像大致是( )解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D ,选C函数()f x =lg(|x |-1)的大致图像是( )解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有选项B 正确.已知lg a +lg b =0,则函数()f x =a x 与函数g (x )=-log b x 的图像可能是( )解析 ∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除A. 若a >1,则0<b <1,此时()f x =a x 是增函数,g (x )=-log b x 是增函数,故选B.若函数y =log a x (a >0,且a ≠1)的图像如图所示,则下列函数图像正确的是( )解析 由题图可知y =log a x 的图像过点(3,1),∴log a 3=1,即a =3. A 项,y =3-x =(13)x 在R 上为减函数,错误;B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误;D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.函数y =ln1|2x -3|的图像为( )解析 易知2x -3≠0,即x ≠32,排除C 、D ,当x >32时,为减函数,当x <32时,为增函数,∴选A.若()f x =lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( ) A.[1,2) B.[1,2] C.[1,+∞) D.[2,+∞)解析 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧ g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2),故选A.设函数()f x =⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若()f a >()f a -,则实数a 的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)解析 由题意可得⎩⎪⎨⎪⎧ a >0,log 2a >log 12a 或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.设()f x =lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使()f x <0的x 的取值范围是( )A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞) 解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.设函数()f x =ln(1+x )-ln(1-x ),则()f x 是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.定义在R 上的函数()f x 满足()f x -=-()f x ,()2f x -=()2f x +,且x ∈(-1,0)时,()f x =2x +15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2),得f (x )=f (x +4),∵4<log 220<5,∴f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=24log 51(2)5-+=-1二、填空题设函数()f x 满足()f x =1+12f ⎛⎫⎪⎝⎭log 2x ,则f (2)=________解析 由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12log 2x ,故f (2)=1+12log 22=32已知函数()f x =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥2,f (x +1),x <2,则f (log 23)的值为________.解析 由题意知f (log 23)=f (1+log 23)=f (log 26)=2log 61()2=16.若函数()f x =⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________解析 由题意f (x )的图像如下图,则⎩⎨⎧a >1,3+log a 2≥4,∴1<a ≤2.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是_________ 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞)若函数()f x =lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是_________ 解析 由题意得⎩⎨⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3设()f x =log ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使()f x <0的x 的取值范围是________解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.三、解答题已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解析 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.∵函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a2)上单调递减,又∵函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,∴⎩⎪⎨⎪⎧2≤a 2,(2)2-2a +a ≥0,解得⎩⎨⎧a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).设()f x =log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间[0,32]上的最大值.解析 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2,由⎩⎨⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数, 故函数f (x )在[0,32]上的最大值是f (1)=log 24=2.专项能力提升设()f x =ln x,0<a <b ,若p =f,q =2a b f +⎛⎫⎪⎝⎭,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >p D.p =r >q 解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p ,故p =r <q .选B.设函数()f x 定义在实数集上,()2f x -=()f x ,且当x ≥1时,()f x =ln x ,则有( )A.13f ⎛⎫⎪⎝⎭<()2f <12f ⎛⎫⎪⎝⎭ B.12f ⎛⎫⎪⎝⎭<()2f <13f ⎛⎫ ⎪⎝⎭ C.12f ⎛⎫ ⎪⎝⎭<13f ⎛⎫⎪⎝⎭<()2f D.()2f <12f ⎛⎫ ⎪⎝⎭<13f ⎛⎫ ⎪⎝⎭解析 由f (2-x )=f (x )知f (x )的图像关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,∴离对称轴x =1距离大的x 的函数值大, ∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).已知函数()f x =lnx1-x,若()f a +()f b =0,且0<a <b <1,则ab 的取值范围是________. 解析 由题意可知lna 1-a +lnb 1-b=0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________. 解析 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2,∴2b =b 2,∴b =2,∴a =4.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值. 解析 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log ax +32)2-18. 当f (x )取最小值-18时,log a x =-32,又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =132-,此时f (x )取得最小值时,x =1332(2)--=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,x =321()2=22∈[2,8],符合题意,∴a =12.。
9、对数与对数函数一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.3log 9log 28的值是 ( )A .32 B .1 C .23 D .22.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.214.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+125.已知2 lg(x -2y )=lg x +lg y ,则y x 的值为( )A .1B .4C .1或4D .4 或6.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)7.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是 ( )A .a > 1B .0≤a < 1C .0<a <1D .0≤a ≤18.已知f (e x)=x ,则f (5)等于 ( )A .e 5B .5eC .ln5D .log 5e9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是 ( )10.若22log ()y x ax a =---在区间(,1-∞上是增函数,则a 的取值范围是( )A .[2-B .)22⎡-⎣C .(22⎤-⎦D .()22-11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或12.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 二、填空题(每小题4分,共16分,请将答案填在横线上) 13.计算:log 2.56.25+lg1001+ln e +3log 122+= . 14.函数y =log 4(x -1)2(x <1=的反函数为___ _______. 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小 . 16.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为_____ _ .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.18.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.19.已知f(x)=x2+(lg a+2)x+lg b,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小.21.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.参考答案一、选择题: ADBCB CDCBA AB 二、填空题:13.213,14.y =1-2x (x ∈R ), 15. (lg m )0.9≤(lg m )0.8,16.8425≤≤y 三、解答题:17.解析:先求函数定义域:由2-ax >0,得ax <2又a 是对数的底数,∴a >0且a ≠1,∴x <a2 由递减区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1 ∴1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35 又a =-1,f (x )=0满足题意,a =1,不合题意. 所以a 的取值范围是:(-∞,-1]∪(35,+∞) 19、解析:由f (-1)=-2 ,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1,∴ba=10,a =10b . 又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得(1+lg b )2-4lg b ≤0 即(lg b -1)2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f (x )=x 2+4x +1=(2+x )2-3 当x =-2时,f (x ) min =-3. 20.解法一:作差法|log a (1-x )|-|log a (1+x )|=|a x lg )1lg(- |-|a x lg )1lg(+|=|lg |1a (|lg(1-x )|-|lg(1+x )|) ∵0<x <1,∴0<1-x <1<1+x∴上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2) 由0<x <1,得,lg(1-x 2)<0,∴-|lg |1a ·lg(1-x 2)>0, ∴|log a (1-x )|>|log a (1+x )| 解法二:作商法|)1(log ||)1(log |x x a a -+=|log (1-x )(1+x )|∵0<x <1,∴0<1-x <1+x ,∴|log (1-x )(1+x )|=-log (1-x )(1+x )=log (1-x )x+11 由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<(1-x )(1+x )<1,∴x+11>1-x >0 ∴0<log (1-x )x+11<log (1-x )(1-x )=1 ∴|log a (1-x )|>|log a (1+x )| 解法三:平方后比较大小∵log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )] =log a (1-x 2)·log ax x +-11=|lg |12a ·lg(1-x 2)·lg x x +-11 ∵0<x <1,∴0<1-x 2<1,0<xx +-11<1 ∴lg(1-x 2)<0,lgxx+-11<0 ∴log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )| 解法四:分类讨论去掉绝对值当a >1时,|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2) ∵0<1-x <1<1+x ,∴0<1-x 2<1 ∴log a (1-x 2)<0,∴-log a (1-x 2)>0当0<a <1时,由0<x <1,则有log a (1-x )>0,log a (1+x )<0 ∴|log a (1-x )|-|log a (1+x )|=|log a (1-x )+log a (1+x )|=log a (1-x 2)>0 ∴当a >0且a ≠1时,总有|log a (1-x )|>|log a (1+x )| 21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x 2>x 1∵a >1,∴12x x a a>,于是a -2x a <a -1x a则log a (a -a 2x a )<log a (a -1xa )即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数(3)证明:令y =log a (a -a x )(x <1),则a -a x =a y ,x =log a (a -a y ) ∴f -1(x )=log a (a -a x )(x <1)故f (x )的反函数是其自身,得函数f (x )=log a (a -a x )(x <1=图象关于y =x 对称. 22.解析:根据已知条件,A 、B 、C 三点坐标分别为(a ,log 2a ),(a +1,log 2(a +1)),(a +2,log 2(a +2)),则△ABC 的面积S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a222)]2([)1)(2(log 21+++=a a a a a )2()1(log 2122++=a a a aa a a 212log 21222+++=)211(log 2122a a ++= 因为1≥a ,所以34log 21)311(log 2122max =+=S。