高考数学专题复习专题3导数及其应用第18练用导数研究函数的单调性练习理
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
第一课时利用导数研究函数的单调性【选题明细表】基础巩固(建议用时:25分钟)1.(2018·云南玉溪模拟)已知函数f(x)=ax3+3x2-x+2在R上是减函数,则a的取值范围是( B )(A)(-∞,3) (B)(-∞,-3](C)(-3,0) (D)[-3,0)解析:由f(x)=ax3+3x2-x+2,得f′(x)=3ax2+6x-1,因为函数在R上是减函数,所以f′(x)=3ax2+6x-1≤0恒成立,所以由Δ=36+12a≤0,解得a≤-3,则a的取值范围是(-∞,-3].故选B.2.设函数f(x)=2(x2-x)ln x-x2+2x,则函数f(x)的单调递减区间为( B )(A)(0,) (B)(,1)(C)(1,+∞) (D)(0,+∞)解析:由题意可得f(x)的定义域为(0,+∞),f′(x)=2(2x-1)ln x+2(x2-x)·-2x+2=(4x-2)ln x.由f′(x)<0可得(4x-2)ln x<0,所以或解得<x<1,故函数f(x)的单调递减区间为(,1),故选B.3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( D )解析:观察导函数f′(x)的图象可知,f′(x)的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f(x)的增减性从左到右依次为减、增、减、增.观察选项可知,排除A,C.如图所示,f′(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项D正确.故选D.4.(2018·龙泉二中月考)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( D )(A)(-∞,-3]∪[-1,1]∪[3,+∞)(B)不存在这样的实数k(C)(-2,2)(D)(-3,-1)∪(1,3)解析:因为f(x)=x3-12x,所以f′(x)=3x2-12,令f′(x)=0,解得x=-2或x=2,即函数f(x)=x3-12x的极值点为±2,若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数, 则-2∈(k-1,k+1)或2∈(k-1,k+1),解得-3<k<-1或1<k<3.故选D.5.(2018·陕西商洛市高考模拟)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:设g(x)=e x f(x)-e x,x∈R,则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1].因为f(x)+f′(x)>1,所以f(x)+f′(x)-1>0,所以g′(x)>0.所以y=g(x)在定义域上单调递增.因为g(0)=e0f(0)-e0=4-1=3,且e x f(x)>e x+3,所以g(x)>3即g(x)>g(0),所以x>0.故选A.6.(2018·河北唐山期末)已知函数f(x)=ln (e x+e-x)+x2,则使得f(2x)>f(x+3)成立的x的取值范围是( D )(A)(-1,3)(B)(-∞,-3)∪(3,+∞)(C)(-3,3)(D)(-∞,-1)∪(3,+∞)解析:因为f(-x)=ln (e-x+e x)+(-x)2=ln (e x+e-x)+x2=f(x),所以函数f(x)是偶函数.通过导函数可知函数y=e x+e-x在(0,+∞)上是增函数,所以函数f(x)=ln (e x+e-x)+x2在(0,+∞)上也是增函数,所以不等式f(2x)>f(x+3)等价于|2x|>|x+3|,解得x<-1或x>3.故选D.7.(2018·四川达州市高考模拟)若任意a,b满足0<a<b<t,都有bln a<aln b,则t的最大值为.解析:因为0<a<b<t,bln a<aln b,所以<,a<b,令y=,则函数在(0,t)上单调递增,故由y′=>0可知0<x<e,故t的最大值是e,答案:e8.(2018·福建厦门市高考一模)若函数f(x)=2x-sin 2x+2mcos x在(0,π)上单调递增,则m 的取值范围是.解析:函数f(x)=2x-sin 2x+2mcos x的导数为f′(x)=2-cos 2x-2msin x,若f(x)在(0,π)单调递增,则2-cos 2x-2msin x≥0在(0,π)上恒成立,即m≤,x∈(0,π).令g(x)====sin x+≥2=,当且仅当sin x=时等号成立.故m≤.答案:(-∞,]能力提升(建议用时:25分钟)9.已知函数f(x)=ln(ax+1)+x2-ax,a>0,试讨论函数f(x)的单调区间.解:f(x)的定义域是(-,+∞),f′(x)==.①当a>时,列表,0) ) ,++ - +f(x)在(-,0),(,+∞)是增函数;f(x)在(0,)是减函数.②当a=时,f′(x)=≥0,f(x)在(-,+∞)是增函数.③当0<a<时,列表,) (+ -f(x)在(-,),(0,+∞)是增函数;f(x)在(,0)是减函数.10.(2018·广东珠海模拟)函数f(x)=x2+mln(1+x).讨论f(x)的单调性.解:f(x)的定义域是(-1,+∞),f′(x)=.由题设知,1+x>0,令g(x)=2x2+2x+m,这是开口向上,以x=-为对称轴的抛物线.在x>-1时,①当g(-)=-+m≥0,即m≥时,g(x)≥0,即f′(x)≥0在(-1,+∞)上恒成立.②当g(-)=-+m<0,即m<时,由g(x)=2x2+2x+m=0得x=-±,令x1=--,x2=-+,则x1<-,x2>-.a.当x1=--≤-1,即≥,即m≤0时,-1<x<x2时,g(x)<0,即f′(x)<0,x>x2时,g(x)>0,即f′(x)>0.b.当-1<x1=--<-,即0<<,即0<m<时,x1<x<x2时,g(x)<0,即f′(x)<0,-1<x<x1或x>x2时,g(x)>0,即f′(x)>0.综上,m≤0时,f(x)在(-1,-+)上单调递减,在(-+,+∞)上单调递增;0<m<时,f(x)在(--,-+)上单调递减,在(-1,--)和(-+,+∞)上单调递增;m≥时,f(x)在(-1,+∞)上单调递增.11.(2018·郑州市部分高中联考节选)已知函数f(x)=aln x-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2·[f′(x)+]在区间(t,3)上总不是单调函数,求m的取值范围.解:(1)函数f(x)的定义域为(0,+∞),且f′(x)=.当a>0时,f(x)的增区间为(0,1),减区间为(1,+∞);当a<0时,f(x)的增区间为(1,+∞),减区间为(0,1);当a=0时,f(x)不是单调函数.(2)由(1)及题意得f′(2)=-=1,即a=-2,所以f(x)=-2ln x+2x-3,f′(x)=.所以g(x)=x3+(+2)x2-2x,所以g′(x)=3x2+(m+4)x-2.因为g(x)在区间(t,3)上总不是单调函数,即g′(x)在区间(t,3)上有变号零点.由于g′(0)=-2,所以g′(t)<0,即3t2+(m+4)t-2<0对任意t∈[1,2]恒成立, 由于g′(0)<0,故只要g′(1)<0且g′(2)<0,即m<-5且m<-9,即m<-9;由g′(3)>0,得m>-.所以-<m<-9.即实数m的取值范围是(-,-9).。
第03节 利用导数研究函数的单调性【考纲解读】【知识清单】1.利用导数研究函数的单调性在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数. '()0()f x f x ≤⇔在(,)a b 上为减函数.【重点难点突破】考点1 确定函数的单调性或求函数的单调区间【1-1】已知函数)(x f 与)('x f 的图象如下图所示,则函数xe xf xg )()(=的递减区间为( )A .)4,0(B .)1,0(,),4(+∞C .)34,0(D .)1,(-∞,)4,34( 【答案】B【1-2】【2018年全国卷II 文】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】(1)f (x )在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)见解析. 【解析】分析:(1)将代入,求导得,令求得增区间,令求得减区间;(2)令,即,则将问题转化为函数只有一个零点问题,研究函数单调性可得.详解:(1)当a =3时,f (x )=,f ′(x )=.令f ′(x )=0解得x =或x =.当x ∈(–∞,)∪(,+∞)时,f ′(x )>0;当x ∈(,)时,f ′(x )<0. 故f (x )在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=,f (3a +1)=,故f (x )有一个零点.综上,f (x )只有一个零点.点睛:(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证. 【1-3】【2016北京理数】设函数()a xf x xebx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值; (2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增. 故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值, 从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞. 【领悟技法】1.导数法证明函数()f x 在(,)a b 内的单调性的步骤 (1)求'()f x ;(2)确认'()f x 在(,)a b 内的符号;(3)作出结论:'()0f x ≥时为增函数;'()0f x ≤时为减函数. 2.求函数的单调区间方法一:①确定函数()y f x =的定义域; ②求导数''()y f x =;③解不等式'()0f x ≥,解集在定义域内的部分为单调递增区间; ④解不等式'()0f x ≤,解集在定义域内的部分为单调递减区间. 3.求函数的单调区间方法二:①确定函数()y f x =的定义域;②求导数''()y f x =,令f′(x)=0,解此方程,求出在定义区间内的一切实根;③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定'()f x 在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 【触类旁通】【变式一】函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)【答案】D【解析】由题意,知f ′(x )=e x+(x -3)e x=(x -2)e x.由f ′(x )>0得x >2.故选D. 【变式二】函数的单调增区间为____________.【答案】【变式三】已知函数23()1(0),()f x ax a g x x bx =+>=+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c)处具有公共切线,求a ,b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间. 【答案】(1) 3.a b ==(2)单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-. 【解析】(1)f′(x)=2ax ,g′(x)=3x 2+b ,由已知可得(1)1(1)123f a cg b c a b =+=⎧⎪=+=⎨⎪=+⎩解得 3.a b ==(2)令()()()()2232213244a a F x f x g x x ax x F x x ax '=+=+++,=++,令()0F x '=,得1212026aa x x a x x >∴<=-,=-,∵,, 由()0F x '>得,x<-2a 或x>-6a ; 由()0F x '<,得,.26a a x <<-- ∴单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-. 【综合点评】解答此类问题,应该首先确定函数的定义域,否则,写出的单调区间易出错;另外,函数的单调区间不能出现“并”的错误写法.考点2 已知函数的单调性求参数的范围【2-1】【2018届浙江省名校协作体高三上学期考试】已知函数()在上为增函数,则的取值范围是( ) A. B.C.D.【答案】A 【解析】由题函数为增函数,则 在上恒成立,则,设则令得到,可知函数在上单调递增,在上单调递减,则, 即的取值范围是,选A【2-2】若21()(2)ln 2f x x b x =--+在(1,+∞)上是减函数,则b 的取值范围是( ) A .[-1,+∞) B .(-1,+∞) C .(-∞,-1] D .(-∞,-1)【答案】C【解析】由题意可知f′(x)=-(x -2)+bx≤0, 在x∈(1,+∞)上恒成立,即b≤x(x-2)在x∈(1,+∞)上恒成立,由于φ(x)=x(x -2)=x 2-2x 在(1,+∞)上的值域是(-1,+∞),故只要b≤-1即可. 【2-3】【2018届浙江省嘉兴市第一中学9月测试】已知函数()()21ln ,2f x x a x a R =-∈. (I )若()y f x =在2x =处的切线方程为y x b =+,求,a b 的值; (II )若()f x 在()1,+∞上为增函数,求a 得取值范围.【答案】(1) 2{22a b ln ==- (2) 1a ≤(II )因为()f x 在()1,+∞上为增函数, 所以()'0af x x x=-≥在()1,+∞上恒成立. 即2a x ≤在()1,+∞上恒成立,所以有1a ≤. 【领悟技法】利用单调性求参数的两类热点问题的处理方法 (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 【触类旁通】【变式一】【2018届安徽省合肥市三模】若函数在区间上是非单调函数,则实数的取值范围是( ) A.B.C.D.【答案】A 【解析】分析:函数在区间上是非单调函数,等价于在有解,即在有解,换元后,求出的范围即可.详解:,,在区间上是非单调函数, 在有解,即在上有解,即在有解,设,在上有解, 时,分别有,所以,即实数的取值范围是,故选A.【变式二】已知向量2=(e ,-x)2xx a + ,1()b t =,,若函数()·f x a b =在区间(-1,1)上存在增区间,则t的取值范围为________. 【答案】()1e ∞-,+【解析】2xf(x)=e -tx,x (-1,1),2x +∈ '()e x f x x t =+-,函数在12()x x ,⊆(-1,1)上单调递增, 故12()x e x t x x x >∈+,,时恒成立,又111x e x e e-<<++,故1t e <+. 【变式三】已知函数()ln (1)2ex f x f x '=-⋅,32()()2x ag x f x x=--(其中a R ∈).(1)求()f x 的单调区间;(2)若函数()g x 在区间[2,)+∞上为增函数,求a 的取值范围; 【答案】(1)单调增区间为(0,2),单调减区间为(2,)+∞.(2)3a ≥-. 【解析】 (1)1()(1)f x f x ''=-,1(1)1(1),(1)2f f f '''∴=-∴=, 1()ln ,(0)22ex f x x x ∴=->,故112()22xf x x x-'=-=. ∴当02x <<时,()0f x '>;当2x >时,()0f x '<.∴()f x 的单调增区间为(0,2),单调减区间为(2,)+∞.(2)2()2ln 2a exg x x x =--,则2221222()2a x x a g x x x x -+'=-+=,由题意可知22220x x a x -+≥在[2,)+∞上恒成立,即2220x x a -+≥在[2,)+∞上恒成立,因函数2()22u x x x a =-+开口向上,且对称轴为14x =,故()u x 在[2,)+∞上单调递增,因此只需使(2)0u ≥,解得3a ≥-; 易知当3a =-时,()0g x '≥且不恒为0. 故3a ≥-.【易错试题常警惕】易错典例:【2017·成都诊断】已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 易错分析:对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.正确解析: (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),①所以h ′(x )=1x-ax -2,由h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,②即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1. 所以a >-1.温馨提醒:(1)利用集合间的包含关系处理:y =f(x)在(a ,b)上单调,则区间(a ,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.提醒:f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a ,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解.【学科素养提升之思想方法篇】_____化整为零,积零为整——分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【典例】已知函数21()(1)2x f x x e ax =--()a R ∈ ()I 当1a ≤时,求()f x 的单调区间;()II 当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方,求a 的取值范围.【答案】(Ⅰ)当0a ≤时,单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,单调增区间是(,ln )a -∞,(0,)+∞,单调减区间是(ln ,0)a ;当1a =时,单调增区间是(,)-∞+∞,无减区间;(Ⅱ)1(,]2-∞. 【解析】试题分析:(Ⅰ)首先求得导函数,然后分0a ≤、01a <<、1a =讨论导函数与0之间的关系,由此求得函数的单调区间;(Ⅱ)首先结合(Ⅰ)将问题转化为210x e ax x --->对(0,+)x ∈∞恒成立,然后令2()1x g x e ax x =---(0)x >,从而通过求导函数()g x ',再构造新函数得到函数()g x 的单调性,进而求得a 的取值范围.试题解析:()I ()()x xf x xe ax x e a '=-=- …(1分) 当0a ≤时,0x e a ->,∴(,0)x ∈-∞时,()0f x '<,()f x 单调递减(0,)x ∈+∞时,()0f x '>,()f x 单调递增 …(2分)当01a <≤时,令()0f x '=得0ln x x a ==或.(i) 当01a <<时,ln 0a <,故:(,ln )x a ∈-∞时,()0f x '>,()f x 单调递增,(ln ,0)x a ∈ 时,()0f x '<,()f x 单调递减,(0,)x ∈+∞时,()0f x '>,()f x 单调递增; …(4分)(ii) 当1a =时,ln 0a =, ()(1)x x f x xe ax x e '=-=-0≥恒成立,()f x 在(,)-∞+∞上单调递增,无减区间; …(5分)综上,当0a ≤时,()f x 的单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,()f x 的单调增区间是(,ln )a -∞(0,)+∞和,单调减区间是(ln ,0)a ;当1a =时,()f x 的单调增区间是(,)-∞+∞,无减区间. …(6分)(i) 当12a ≤时,()'20x h x e a =->恒成立,()g x '在(0,)+∞上单调递增,∴()'(0)0g x g '>=, ∴()g x 在(0,)+∞上单调递增 ∴()(0)0g x g >=,符合题意; …(10分) (ii) 当12a >时,令()'0h x =得ln(2)x a = (0,ln(2))x a ∴∈时,()'0h x <,∴()g x '在(0,ln(2))a 上单调递减 ∴(0,ln(2))x a ∈时,()'(0)0g x g '<= ∴()g x 在(0,ln(2))a 上单调递减, ∴ (0,ln(2))x a ∈时,()(0)0g x g <=,不符合题意 …(11分) 综上可得a 的取值范围是1(,]2-∞.…(12分)。
第03节 利用导数研究函数的单调性A 基础巩固训练1.【2018年全国卷Ⅲ文】函数的图象大致为A. AB. BC. CD. D 【答案】D【解析】分析:由特殊值排除即可 详解:当时,,排除A,B.,当时,,排除C故正确答案选D.2.【2017年浙江卷】函数()()y y f x f x ==,的导函数的图像如图所示,则函数()y f x =的图像可能是A. B.C. D.【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()'f x 的正负,得出原函数()f x 的单调区间. 3.【2018届宁夏回族自治区银川一中考前训练】设,则函数A. 有极值B. 有零点C. 是奇函数D. 是增函数 【答案】D【解析】分析:由x <0,求得导数判断符号,可得单调性;再由三次函数的单调性,可得x ≥0的单调性,即可判断正确结论.详解:由x <0,f (x )=x ﹣sinx ,导数为f ′(x )=1﹣cosx , 且f′(x )≥0,f (x )递增,f (x )>0; 又x ≥0,f (x )=x 3+1递增, 且f (0)=1>0﹣sin0, 故f (x )在R 上递增;f (x )无极值和无零点,且不为奇函数. 故答案为:D4.已知()f x 在R 上可导,且2()2(2)f x x xf '=+,则(1)f -与(1)f 的大小关系是( ) (A )(1)(1)f f -= (B )(1)(1)f f -> (C )(1)(1)f f -< (D )不确定 【答案】B5.【2018届吉林省吉大附中四模】已知,函数,若在上是单调减函数,则的取值范围是( )A. B. C. D.【答案】C【解析】分析:根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.详解:因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选CB能力提升训练1.【2018届黑龙江省哈尔滨师范大学附属中学三模】若函数在单调递增,则的取值范围是( )A. B. C. D.【答案】A【解析】分析:在单调递增,等价于恒成立,换元后可得在上恒成立,利用二次函数的性质可得结果.详解:,,设,,在递增,在上恒成立,因为二次函数图象开口向下,,的取值范围是,故选A.2.【2018届浙江省绍兴市3月模拟】已知,,且,则()A. B. C. D.【答案】C【解析】因为,所以,令是增函数.综上所述,故选C. 3.已知函数(1)()ln 1a x f x x x -=-+在[1,)+∞上是减函数,则实数a 的取值范围为( ) A .1a < B .2a < C .2a ≤ D .3a ≤ 【答案】C4.已知()f x 是定义在R 上的偶函数,其导函数为()f x ',若()()f x f x '<,且(1)f x +(3)f x =-,(2015)2f =,则不等式1()2x f x e -<的解集为( )A .(1,)+∞B .(,)e +∞C .(,0)-∞D .1(,)e-∞ 【答案】A 【解析】因为函数()f x 是偶函数所以(1)(3)(3)f x f x f x +=-=-所以(4)()f x f x +=,即函数()f x 是周期为4的周期函数因为(2015)(45041)(1)(1)2f f f f =⨯-=-== 所以(1)2f = 设()()x f x g x e=所以2()()()()()0x x x xf x e f x e f x f xg x e e''--'==< 所以()g x 在R 上是单调递减 不等式1()2x f x e -<等价于()2x f x e e< 即()(1)g x g < 所以1x >所以不等式1()2x f x e -<的解集为(1,)+∞故答案选A5.【2019届四川省成都市第七中学零诊】设函数是奇函数的导函数,当时,,则使得成立的的取值范围是( ) A.B. C.D.【答案】D【解析】分析:构造函数,可得在上为减函数,可得在区间和上,都有,结合函数的奇偶性可得在区间和上,都有,原不等式等价于或,解可得的取值范围,即可得到结论.详解:根据题意,设,其导数,又由当时,, 则有,即函数在上为减函数, 又由,则在区间上,,又由,则,在区间上,,又由,则,则在和上,,又由为奇函数,则在区间和上,都有,或,解可得或,则的取值范围是,故选D.C 思维拓展训练1.【2018届福建省三明市第一中学模拟卷(一)】下列命题为真命题的个数是()①;②;③;④A. 1B. 2C. 3D. 4【答案】C【解析】分析:①利用分析法和构造函数,利用导数和函数的最值得关系即可判断;②根据对数的运算性质即可判断,③利用分析法和构造函数;④两边取对数即可判断.详解:对于①,设,当时,,函数单调递增,当时,,函数单调递减,,,即,故①正确.对于②,,故②正确.对于③,设,当时,,函数单调递增,当时,,函数单调递减,,即,故③正确.对于④,,故④错误,正确命题的个数为个,故选C.2.【2018届河南省安阳35中核心押题卷一】函数有三个零点,则实数的取值范围是()A. B. C. D.【答案】D【解析】分析:由函数有三个零点,要求实数的取值范围,应考虑函数的单调性.故应先求得,而的正负不容易判断,故可构造函数,二次求导得,进而可得函数在上为减函数,在上为增函数.进而得.因为,所以1为函数的一个零点.根据条件函数有三个零点,可得到函数应有三个单调区间.所以.进而得 .所以函数在上为减函数,在上为增函数.所以.因为,所以1为函数的一个零点.因为函数有三个零点,所以函数应有三个单调区间.所以.所以 .故选D.3.已知函数()=-xaf x x e 存在单调递减区间,且()=y f x 的图象在0=x 处的切线l与曲线xy e =相切,符合情况的切线l ( )(A )有3条 (B )有2条 (C ) 有1条 (D )不存在 【答案】D 【解析】/1()1x a f x e a =-,依题意可知,/1()10x a f x e a =-<在(,)-∞+∞有解,①0a <时,/()0f x < 在(,)-∞+∞无解,不符合题意;②0a >时,/()0ln ln xaxf x a e a x a a a>⇔>⇔>⇔<符合题意,所以0a >.易知,曲线)(x f y =在0=x 的切线l 的方程为1)11(--=x ay . 假设l 与曲线x y =e 相切,设切点为),(00y x消去a 得0001x x e e x =-,设()1x x h x e x e =--,则/()x h x e x =,令/()0h x >,则0x >, 所以()h x 在)0,(-∞上单调递减,在),0(+∞上单调递增,当,()1x h x →-∞→-,,()x h x →+∞→+∞所以()h x 在(0,)+∞有唯一解,则01x e >,而0>a 时,111<-a,与01x e >矛盾,所以不存在.4.【2018届云南省昆明市5月检测】已知函数在区间上单调递增,则的最大值是( )A. B. C. D.【答案】A进而解不等式,求函数单调性,函数在区间上单调递增,在区间上单调递减.就可求其最小值.可得取值范围. 详解:因为函数,所以 .因为函数在区间上单调递增,所以在区间上恒成立,即亦即在区间上恒成立,令 ,所以因为,所以 .因为.令,可得.所以函数在区间上单调递增,在区间上单调递减.所以 .所以.5.已知函数23()1(0),()f x ax a g x x bx =+>=+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c)处具有公共切线,求a ,b 的值;(2)当24a b =时,求函数()()f x g x +的单调区间.【答案】(1) 3.a b ==(2)单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-. 【解析】(1)f′(x)=2ax ,g′(x)=3x 2+b , 由已知可得(1)1(1)123f a c g b c a b =+=⎧⎪=+=⎨⎪=+⎩解得 3.a b ==(2)令()()()()2232213244a a F x f x g x x ax x F x x ax '=+=+++,=++, 令()0F x '=,得1212026a a x x a x x >∴<=-,=-,∵,,由()0F x '>得,x<-2a 或x>-6a ; 由()0F x '<,得,.26a a x <<-- ∴单调递增区间是,,,26a a ⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减区间为,)26a a -(-.。
第3讲导数及其应用考情解读 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.4.定积分的三个公式与一个定理(1)定积分的性质:①ʃb a kf(x)d x=kʃb a f(x)d x;②ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;③ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).(2)微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).热点一导数的运算和几何意义例1 (1)(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________. 思维启迪 (1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A 点坐标是解题的关键点,列方程求出. 答案 (1)5x +y -3=0 (2)4 解析 (1)因为y ′=e -5x(-5x )′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0, 又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3a 20=-1,即y 0=3ax 30, 又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于________. 答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π.(2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R ,所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1)=-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4)=(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤[g (x )]min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴[g (x )]min =g (2)=1.∴a ≤1.所以实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以[f (x )]min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以[f (x )]min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以[f (x )]min =f (e)=1+2ae=3,得a =e.适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12,∴a ≥12,a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时G ′(x )、G (x )的变化情况如下表:由上表知:G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2>0.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a,则f ′(x )>0, 故f (x )在(0,-12a]上是增函数; 若x >-12a,则f ′(x )<0,故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3], 恒有ma -f (x )>a 2成立, 等价于ma -a 2>f (x )max . 因为a ∈(-4,-2),所以24< -12a <12<1. 由(1),知当a ∈(-4,-2)时,f (x )在[1,3]上是减函数, 所以f (x )max =f (1)=2a , 所以ma -a 2>2a ,即m <a +2.因为a ∈(-4,-2),所以-2<a +2<0. 所以实数m 的取值范围为m ≤-2. 热点四 定积分 例4 (1)已知a =ʃ10(e x+2x )d x (e为自然对数的底数),函数f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,则f (a )+f (log 216)=________.(2)(2014·山东)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4思维启迪 (1)利用微积分基本定理先求出a ,再求分段函数的函数值;(2)利用图形将所求面积化为定积分. 答案 (1)7 (2)D 解析 (1)因为a =ʃ10(e x +2x )d x =(e x +x 2)|1=e +1-1=e ,f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,所以f (a )+f (log 216)=f (e)+f (-log 26)=ln e +2-(-log 26)=1+6=7. (2)令4x =x 3,解得x =0或x =±2,∴S =ʃ20(4x -x 3)=⎪⎪⎝⎛⎭⎫2x 2-x 4420=8-4=4,故选D.思维升华 (1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数. (2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.(1)若ʃa1(2x +1x)d x =3+ln 2,且a >1,则a 的值为( )A .6B .4C .3D .2 (2)如图,阴影部分的面积是( )A .2 3B .9-2 3 C.323D.353答案 (1)D (2)C解析 (1)ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1,由题意,可得a 2+ln a -1=3+ln 2, 解得a =2.(2)由题图,可知阴影部分面积为ʃ1-3(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=(3-13-1)-(-9+9-9)=323.1.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f (x ),“f (x )在x =x 0处的导数f ′(x )=0”是“f (x )在x =x 0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点. 3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论. 4.定积分在几何中的应用被积函数为y =f (x ),由曲线y =f (x )与直线x =a ,x =b (a <b )和y =0所围成的曲边梯形的面积为S .(1)当f (x )>0时,S =ʃb a f (x )d x ; (2)当f (x )<0时,S =-ʃb a f (x )d x ;(3)当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =ʃc a f (x )d x -ʃb c f (x )d x .真题感悟1.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x =1e x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2, ∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3,h ′(x )=3x 2-3, 所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a , 故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围;解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x,令f ′(x )=0得x =±2, ∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0;∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f (x )在x =2处取得极小值f (2)=12-ln 2; 又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴x =1时f (x )的最大值为18,x =2时函数取得最小值为12-ln 2. (2)由(1)知当x ∈[1,3]时,f (x )≤18, 故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2]. ∴⎩⎨⎧ g (0)<318g (2)<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、选择题1.曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=0答案 A解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0,故选A.2.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.3.(2014·陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 答案 A解析 函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是( ) A .[14,1) B .[34,1) C .(94,+∞) D .(1,94) 答案 B解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, ∴x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,∴34≤a <1. 6.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .ʃ20|x 2-1|d xB .|ʃ20(x 2-1)d x |C .ʃ20(x 2-1)d xD .ʃ10(x 2-1)d x +ʃ21(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如图图形的面积相等,即ʃ20|x 2-1|d x ,选A.二、填空题7.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________. 答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1. 8.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 a <12解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 9.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.三、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28……),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]单调递减,在[-2,t +1]单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2)2e t (t +1)(t ≥-2) (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )单调递减,在[ln 1k,+∞)单调递增. ①当ln 1k<-2, 即k >e 2时,F (x )在[-2,+∞)单调递增,F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )单调递减,在[ln 1k,+∞)单调递增. F (x )min =F (ln 1k)=ln k (2-ln k )>0, 满足F (x )min ≥0.综上所述,满足题意的k 的取值范围为[1,e 2].。
专题十八应用导数研究函数的性质【母题原题1】【2018浙江,22】已知函数f(x)=−ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】分析: (Ⅰ)先求导数,根据条件解得x1,x2关系,再化简f(x1)+f(x2)为,利用基本不等式求得取值范围,最后根据函数单调性证明不等式,(Ⅱ)一方面利用零点存在定理证明函数有零点,另一方面,利用导数证明函数在上单调递减,即至多一个零点.两者综合即得结论. 详解:(Ⅰ)函数f(x)的导函数,由得,因为,所以.由基本不等式得.因为,所以.由题意得.设,则,所以所以g (x )在[256,+∞)上单调递增, 故,即.设h (x )=,则h ′(x )=,其中g (x )=.由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 点睛:利用导数证明不等式常见类型及解题策略:(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 【母题原题2】【2017浙江,7】函数()()y y f x f x ==,的导函数的图像如图所示,则函数()y f x =的图像可能是A. B.C. D.【答案】Dx=位于增区间内,因此选D.【解析】原函数先减再增,再减再增,且0【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为0x,且图象在0x两侧'f x 附近连续分布于x轴上下方,则0x为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x的单调区间.的正负,得出原函数()【命题意图】考查导数的概念、导数公式求导法则导数的几何意义及导数的应用,考查数学式子变形能力、运算求解能力、分类讨论思想、函数与方程思想、化归与转化思想及分析问题与解决问题的能力.【命题规律】从全国看,高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一般有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.浙江卷2018年作为压轴题,其考查的灵活性可见一斑.【答题模板】求解应用导数研究函数的性质问题的一般思路:第一步:牢记求导法则,正确求导.在函数与导数类解答题中,通常都会涉及求导,正确的求导是解题关键,因此要牢记求导公式,做到正确求导,解题时应先写出函数定义域.第二步:研究(1)(2)问的关系,注意利用第(1)问的结果.在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决.第三步:根据条件,寻找或构造目标函数,注意分类讨论.高考函数与导数解答题,一般都会涉及分类讨论,并且讨论的步骤也是得分点,所以一定要重视分类讨论.第四步:选择恰当的方法求解,注意写全得分关键:在函数与导数问题中,求导的结果、分类讨论的条件、单调区间、零点等一些关键式子和结果都是得分点,在解答时一定要写清楚. 【方法总结】1.导数法证明函数()f x 在(,)a b 内的单调性的步骤 (1)求'()f x ;(2)确认'()f x 在(,)a b 内的符号;(3)作出结论:'()0f x ≥时为增函数;'()0f x ≤时为减函数.2.图象法确定函数()f x 在(,)a b 内的单调性:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).3.已知函数单调性,求参数范围的两个方法:(1)利用集合间的包含关系处理:y =f(x)在(a ,b)上单调,则区间(a ,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解. 4.求函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x 0左右两侧值的符号,如果左正右负,那么f(x)在x 0处取极大值,如果左负右正,那么f(x)在x 0处取极小值.【温馨提醒】导数值为0的点不一定是函数的极值点,“函数在某点的导数值为0”是“函数在该点取得极值”的必要不充分条件.找函数的极值点,即先找导数的零点,但并不是说导数的零点就是极值点(如y =x 3),还要保证该零点为变号零点.6.求函数f(x)在[a ,b]上的最大值和最小值的步骤 (1)求函数在(a ,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【温馨提醒】函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,最值若存在,则必定是惟一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值.7. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理. 8.关于最值问题:①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【2018届河北省衡水中学三轮复习系列七】已知函数(为自然对数的底),则的大致图象是( )A. B. C. D.【答案】C【解析】分析:求出导函数,利用导函数判断函数的单调性,根据数形结合,利用零点存在定理判断极值点位置,结合,利用排除法可得结果.详解:函数的极值点就是的根,相当于函数和函数交点的横坐标,画出函数图象如图,由图知函数和函数有两个交点,因为,.所以,可排除选项;由,可排除选项,故选C.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2.【2018届浙江省杭州市第二中学仿真】设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.【答案】(1)(2)(Ⅱ),,因为,所以.令,,则在单调递减,因为,所以在上增,在单调递增.,,因为,所以在区间上的值域为.3.【浙江省杭州市学军中学2018年5月模拟】已知函数,其中.(Ⅰ)若函数在区间上不单调,求的取值范围;(Ⅱ)若函数在区间上有极大值,求的值.【答案】(1) .(2) .【解析】分析:(1)先求导,再分离参数转化为在上有解,再求a的取值范围.(2)先对a分类讨论求函数在区间上极大值,得,再求和a的值.详解:(1)∵=在上有解,所以在上有解,设g(x)=所以函数g(x)在(1,2)上是减函数,在(2,+∞)上是增函数.所以∴所以函数在上单调递减,在上单调递增,在上单调递减,由极大值,得(*)又∵,∴代入(*)得设函数,则所以函数在上单调递增,而所以,所以∴当时,函数在由极大值.点睛:(1)本题主要考查利用导数求函数的单调性和最值、极值,意在考查学生对这些基础知识的掌握能力和分析推理的能力.(2)解答本题的难点求得极大值,得(*)后,如何求的值.这里又利用了构造函数和求导解答.4.【2018届浙江省温州市9月一模】已知函数.(1)求的单调递增区间;(2)当时,求证:.【答案】(1) 的单调递增区间为和;(2)证明见解析.【解析】试题分析:(1)求出,解不等式即可得的单调增区间;(2)等价于,利用导数研究函数的单调性,证明,从而可得结果.试题解析:(1)∵,令,解得或,又由于函数的定义域为,∴的单调递增区间为和.(2)由(1)知在上单调递增,在上单调递减,所以,当时,,因此,当时,恒有,即.5.【2018届山东省潍坊市青州市三模】已知(1)求的单调区间;(2)设,为函数的两个零点,求证:.【答案】(1)见解析;(2)见解析【解析】分析:(1)由函数,求得,通过讨论实数的取值范围,即可求出函数的单调区间;(2)构造函数,与图象两交点的横坐标为,问题转化为,令,根据函数的单调性即可作出证明.详解:(1)∵,∴当时,∴,即的单调递增区间为,无减区间;当时,∴,由,得,时,,时,,∴时,易知的单调递增区间为,单调递减区间为,(2)由(1)知的单调递增区间为,单调递减区间为,不妨设,由条件知,即构造函数,与图象两交点的横坐标为由可得而,∴知在区间上单调递减,在区间上单调递增,可知欲证,只需证,即证,考虑到在上递增,只需证由知,只需证令,则,所以为增函数,又,结合知,即成立,即成立.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.6.【2018届江苏省盐城中学全仿真】已知函数,.(I)若,求函数的单调区间;(Ⅱ)若存在极小值点,且,其中,求证: ;(Ⅲ)试问过点可作多少条直线与的图像相切?并说明理由.【答案】(Ⅰ)单调减区间为单调增区间为;(Ⅱ)证明见解析;(Ⅲ)答案见解析.【解析】分析:(1)对进行求导计算即可得到单调区间;(2)若存在极小值点,,则,由可得,化简代入,即可得到证明;解析:(1) ,所以的单调减区间为单调增区间为;(2) ,存在极小值点,则.,则,所以代入所以,则,又,所以;(3) 时,有1条切线;时,有2条切线.设切点坐标是,依题意:即,化简得:设,故函数在上零点个数,即是曲线切线的条数.,①当时,,在上恰有一个零点1;②当时,在上恒成立,在上单调递减,且,故在上有且只有一个零点,当时,在上恰有个零点;③时,在上递减,在上递增,故在至多有两个零点,且又函数在单调递增,且值域是,故对任意实数,必存在,使,此时由于,函数在上必有一零点;先证明当时,,即证若,,而,由于若,构建函数,在为增函数,综上时,,所以,故又,,所以在必有一零点.当时,在上有两个零点综上:时,有1条切线;时,有2条切线.点睛:导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.7.【2018届湖南省长沙市长郡中学模拟卷(二)】已知函数,(,且). (1)当时,若对任意,恒成立,求实数的取值范围;(2)若,设,是的导函数,判断的零点个数,并证明.【答案】(1)(2)见解析【解析】分析:(1)由题意,求导,若k≤0,则g′(x)>0,根据函数的单调性即可求得g(x)最大值,即可求得实数k的取值范围;(2)构造辅助函数,求导,根据函数的单调性及函数零点的判断,即可求得f'(x)的零点个数.详解: (1)当时,对任意,恒成立,令,求导,由,则,若,则,所以在上是增函数,所以,符合题意,当时,令,解得,,则在上是减函数,当时,,不符合题意,综上可知的取值范围为.其中,则,,,当时,,由零点存在定理及单调性可知在上存在唯一的零点,取,则,令,知在上是减函数,故当时,,即,由零点存在定理及单调性可知在上存在唯一,,由的单调递减区间是,则在上仅存在唯一的零点,综上可知共有三个零点.点睛:(1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.(2)本题将方程实根个数的问题转化为两函数图象交点的问题解决,解题时注意换元法的应用,以便将复杂的问题转化为简单的问题处理.8.【2018届四川省成都市龙泉驿区第二中学校3月市“二诊”】设a >0,已知函x >0).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)试判断函数()f x 在()0,+∞上是否有两个零点,并说明理由. 【答案】(1)见解析(2) 函数()f x 没有两个零点【解析】试题分析:(Ⅰ)求出函数的导数,解关于导函数的不等式,通过讨论a 的范围,求出函数的单调区间即可;(Ⅱ)假设2个零点,推出矛盾即可. 试题解析:()()22'0220f x x a x a <⇔+-+<,设()()2222g x x a x a =+-+,则()161a ∆=-,①当1a ≥时, 0∆≤, ()0g x ≥,即()'0f x ≥, ∴()f x 在()0,+∞上单调递增;②当01a <<时, 0∆>,由()0g x =得可知120x x <<,由()g x 的图象得:()f x 在()f x 在(Ⅱ)解法:函数()f x 在()0,+∞上不存在两个零点 假设函数()f x 有两个零点,由(Ⅰ)知, 01a <<, 因为()0ln 0f a =->,则()20f x <,即由()2'0f x =知 ,则()ln 2t t <(*),,得()1,2t ∈, 设()()ln 2h t t t =-,得所以()h t 在()1,2递增,得()()11ln20h t h >=->,即()ln 2t t >, 这与(*)式矛盾,所以上假设不成立,即函数()f x 没有两个零点. 9.【2018届安徽亳州市涡阳一中最后一卷】已知.(1)若,函数在其定义域内是增函数,求的取值范围; (2)当,时,证明:函数只有一个零点;(3)若的图像与轴交于,两点,中点为,求证:.【答案】(1);(2)见解析;(3)见解析【解析】分析:(1)在上递增, ∴ 对恒成立即对恒成立,∴只需即可;(2)利用导数研究函数的单调性,可得函数在区间上单调递增,在区间上单调递减,∴当时,函数取得最大值,其值为,当时,,即,从而可得结果;(3)由已知得,化为,可得,,,只需证明即可得结论.(2)当,时,,其定义域是,∴ ,∵ ,∴ 时,;当时,∴ 函数在区间上单调递增,在区间上单调递减∴ 当时,函数取得最大值,其值为当时,,即∴ 函数只有一个零点(3)由已知得两式相减,得,由及,得令,,∵ ,∴ 在上递减,∴∵ ,∴10.【2018届河南省洛阳市第三次统一考试】已知函数,其中.(1)讨论函数的单调性;(2)当时,证明:不等式恒成立(其中,).【答案】(1)见解析;(2)见解析.【解析】分析:(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(2)问题转化为证明恒成立.设,则上式等价于,要证明对任意,恒成立,要证明g(x1+x2)>g(x1-x2)对任意x1∈R,x2∈(0,+∞)恒成立,即证明在上单调递增,根据函数的单调性证明即可.详解:(1)由于.1)当时,,当时,,递增,当时,,递减;2)当时,由得或.当时,,当时,,递增,当时,,递减,当时,,递增;当时,,递增;③当时,.当时,,递增,当时,,递减,当时,,递增.综上,当时,在上是减函数,在上是增函数;当时,在,上是增函数,在上是减函数;当时,在上是增函数;当时,在,上是增函数,在上是减函数.(2)依题意恒成立.设,则上式等价于,要证明对任意,恒成立,即证明在上单调递增,又,只需证明即可.令,则,当时,,当时,,∴,即,,那么,当时,,所以;当时,,,∴恒成立.从而原不等式成立.11.【2018届四川省南充市三诊】函数.(Ⅰ)若曲线在点处的切线与直线垂直,求单调递减区间和极值(其中为自然对数的底数);(Ⅱ)若对任意,恒成立.求的取值范围.【答案】(Ⅰ)的单调递减区间为,极小值为2,无极大值.(Ⅱ)【解析】分析:(Ⅰ)先利用导数的几何意义求出k的值,然后利用导数求该函数单调区间及其极值;(Ⅱ)由题意可知,函数f(x)-x在(0,+∞)上递增,即该函数的导数大于等于零在(0,+∞)恒成立,然后转化为导函数的最值问题来解.详解:(Ⅰ)由,知,.因为曲线在点处的切线与直线垂直,所以,即,得.所以.当时,,在单调递减;当时,,在单调递增.所以当时,有极小值,且极小值为.综上,的单调递减区间为,极小值为2,无极大值.(Ⅱ)因为对任意,恒成立所以对任意恒成立,令,则在单调递减,所以在恒成立,所以恒成立.令,则.所以的取值范围是.点睛:利用函数的导数研究函数的单调性有两种题型,一种是求单调区间,只需令导数大于0求增区间,令导数小于0求减区间;另一种是已知函数的单调性求参数,若已知函数单增,只需函数导数在区间上恒大于等于0即可,若已知函数单减,只需函数导数小于等于0即可.注意等号!12.【2018届安徽省合肥市高三三模】已知函数有两个极值点,(为自然对数的底数). (Ⅰ)求实数的取值范围;(Ⅱ)求证:.【答案】(1)(2)见解析【解析】分析:(Ⅰ) 函数有两个极值点,只需有两个根,利用导数研究函数的单调性,结合零点存在定理与函数图象可得当时,没有极值点;当时,当时,有两个极值点;(Ⅱ)由(Ⅰ)知,为的两个实数根,,在上单调递减,问题转化为,要证,只需证,即证,利用导数可得,从而可得结论.详解:(Ⅰ)∵,∴.设,则.令,解得.∴当时,;当时,.∴.当时,,∴函数单调递增,没有极值点;当时,,且当时,;当时,. ∴当时,有两个零点.不妨设,则.∴当函数有两个极值点时,的取值范围为.∵函数在上也单调递减,∴.∴要证,只需证,即证.设函数,则.设,则,∴在上单调递增,∴,即.∴在上单调递增,∴.∴当时,,则,∴,∴.。
【步步高】(江苏专用)2017版高考数学 专题3 导数及其应用 18 用导数研究函数的单调性 理1.设函数f (x )=-1+x2,则f (x )的单调减区间是________.2.如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是________.①函数f (x )在区间(-3,0)上是减函数;②函数f (x )在区间(-3,2)上是减函数; ③函数f (x )在区间(0,2)上是减函数;④函数f (x )在区间(-3,2)上是单调函数. 3.已知函数f (x )=mx 3+3(m -1)x 2-m 2+1(m >0)的单调递减区间是(0,4),则m =________. 4.已知函数f (x )=1-x ax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.5.(2015·广东江门普通高中调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cosx ,则f (x )的单调递增区间是________________.6.已知函数f (x )=x 2+3x -2ln x ,则函数f (x )的单调递减区间为__________. 7.已知函数f (x )=12x 2-2ax -a ln x 在(1,2)上单调递减,则a 的取值范围是________.8.设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ).则下列三个数:e f (2),f (3),e 2f (-1)从小到大依次排列为________________.9.若f (x )是定义在R 上的可导函数,且对任意x ∈R ,满足f (x )+f ′(x )>0,则对任意实数a ,b ,下列结论成立的是________.①a >b ⇔e af (b )>e bf (a );②a >b ⇔e af (b )<e bf (a ); ③a >b ⇔e af (a )<e bf (b );④a >b ⇔e af (a )>e bf (b ). 10.已知函数f (x )=e x2-1ex -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围.答案解析1.(-1,1) 解析 f ′(x )=-+x2-2x ·2x+x22=x +x -+x22,当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0,所以函数f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减. 2.①解析 当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确. 3.13解析 函数f (x )=mx 3+3(m -1)x 2-m 2+1(m >0),则f ′(x )=3mx 2+6(m -1)x , 令f ′(x )<0,即3mx 2+6(m -1)x <0,因为m >0,f (x )的单调递减区间是(0,4),所以0,4是方程3mx 2+6(m -1)x =0的两根,所以0+4=-mm,所以m =13.4.[1,+∞)解析 ∵f (x )=1-xax+ln x (x >0),∴f ′(x )=ax -1ax 2(a >0), ∵函数f (x )在[1,+∞)上为增函数, ∴f ′(x )=ax -1ax 2≥0对x ∈[1,+∞)恒成立, ∴ax -1≥0对x ∈[1,+∞)恒成立, 即a ≥1x对x ∈[1,+∞)恒成立,∴a ≥1.5.(-π,-π2 ]和[ 0,π2]解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x ≥0,则其在区间(-π,π)上的解集为(-π,-π2 ]和[0,π2 ],即f (x )的单调递增区间是(-π,-π2]和[ 0,π2]. 6.⎝ ⎛⎭⎪⎫0,12 解析 函数f (x )=x 2+3x -2ln x 的定义域为(0,+∞).因为f ′(x )=2x +3-2x,所以令2x +3-2x <0,即2x 2+3x -2<0,解得x ∈⎝ ⎛⎭⎪⎫-2,12.又x ∈(0,+∞),所以x ∈⎝ ⎛⎭⎪⎫0,12.所以函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.7.[ 45,+∞)解析 因为函数f (x )=12x 2-2ax -a ln x 在(1,2)上单调递减,所以f ′(x )=x -2a -ax=x 2-2ax -a x ≤0在(1,2)上恒成立,即a ≥x 22x +1在x ∈(1,2)上恒成立,易知函数y =x 22x +1在(1,2)上是增函数,所以x 22x +1<222×2+1=45,故a ≥45.8.f (3)<e f (2)<e 2f (-1) 解析 构造函数g (x )=f xex,g ′(x )=[fx -f xxe2x<0, 所以g (x )在R 上为减函数,所以g (1)>g (2)>g (3),即fe>fe2>fe3,得e 2f (1)>e f(2)>f (3),又f (-1)=f (1),所以f (3)<e f (2)<e 2f (-1). 9.④解析 设F (x )=e xf (x ),则F ′(x )=e xf (x )+e xf ′(x )>0,故函数F (x )在实数集R 上是增函数,当a >b 时,F (a )>F (b ),即e af (a )>e bf (b ),反之成立.故④成立.10.解 (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x-2),令f ′(x )=0,得e x=1或e x=2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2;令f ′(x )<0,得0<x <ln 2.∴f (x )的增区间是(-∞,0],[ln 2,+∞),减区间是(0,ln 2). (2)f ′(x )=e x2+1e x -a ,令e x=t ,由于x ∈[-1,1], ∴t ∈[1e,e].令h (t )=t 2+1t (t ∈[1e,e]),h ′(t )=12-1t 2=t 2-22t2,∴当t ∈[1e ,2)时,h ′(t )<0,函数h (t )为单调递减函数;当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调递增函数. 故h (t )在[1e ,e]上的极小值点为t =2,且h (2)= 2.又h (e)=e 2+1e <h (1e )=12e +e ,∴2≤h (t )≤e+12e .∵函数f (x )在[-1,1]上为单调函数,①若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈[1e ,e]恒成立,所以a ≤2;②若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈[1e ,e]恒成立,所以a ≥e+12e,综上可得a 的取值范围是(-∞,2]∪[e+12e ,+∞).。
高考数学三年真题专题演练—导数及其应用(解答题)1.【2021·天津高考真题】已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围. 【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞ 【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)xa x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值. 【详解】(I )()(1)xf x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)xa x e =+,令()(1)x g x x e =+,则()(2)xg x x e =+',当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增, 当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,ma m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-, 令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-, 所以实数b 的取值范围[),e -+∞. 【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.2.【2021·全国高考真题】已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增,若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而()()210b f b b e ab b --=----<,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点. 综上可得,题中的结论成立. 若选择条件②: 由于102a <<,故21a <,则()01210f b a =-≤-<,当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. 当0b <时,构造函数()1xH x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减,当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x =,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 3.【2021·北京高考真题】已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值. 【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a-=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <. 所以,()()max 11f x f =-=,()()min 144f x f ==-. 4.【2021·全国高考真题】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【分析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立. 【详解】(1)函数的定义域为()0,∞+, 又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<. 先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->, 则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+. 设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=, 故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b<+<. 【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.5.【2021·浙江高考真题】设a ,b 为实数,且1a >,函数()2R ()xf x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围; (3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)【答案】(1)0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭;(2)(21,e ⎤⎦;(3)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【解析】(1)2(),()ln x xf x b f a x e a x a b '==+--,①若0b ≤,则()ln 0xf x a a b '=-≥,所以()f x 在R 上单调递增;②若0b >, 当,log ln ab x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当log ,ln ab x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增. 综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln ab a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a tt +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t'⋅-++--===, 记2()(1),()(1)10t t tt h t e t e h t e t e e t '=--=-+⋅=⋅>, 又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b bg e a a e∴>=∴<, 22222,ln ,21bb e a a e e>∴>∴≤⇒<≤. 即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数. 由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x +=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+, 222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b =+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e >+>, 只需证2222222ln ln 02x x x e x e e x e-->,只需证2ln ln 202x e xx e-->,242e <,只需证4()ln ln 2x x h x x e =--在5x >时为正,由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增, 又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x xh x x e=--在5x >时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.6.【2021·全国高考真题(理)】已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,e e ⋃+∞. 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x a x a =有两个不同的实数根,即曲线()y g x =与直线ln ay a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【解析】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x '--===,令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,e e ⋃+∞.【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.7.【2021·全国高考真题(理)】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见详解【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【解析】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠, 当()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=;当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=;综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立【点睛】本题为难题,根据极值点处导数为0可求参数a ,第二问解法并不唯一,分类讨论对函数进行等价转化的过程,一定要注意转化前后的等价性问题,构造函数和换元法也常常用于解决复杂函数的最值与恒成立问题.8.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f (x )=e x +x 2–x ,则()f x '=e x +2x –1.故当x ∈(–∞,0)时,()f x '<0;当x ∈(0,+∞)时,()f x '>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增. (2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤. 设函数321()(1)e (0)2xg x x ax x x -=-++≥,则32213()(121)e 22x g x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i )若2a +1≤0,即12a ≤-,则当x ∈(0,2)时,()g x '>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即1122a -<<,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥27e 4-. 所以当27e 142a -≤<时,g (x )≤1. (iii )若2a +1≥2,即12a ≥,则g (x )≤31(1)e 2xx x -++.由于27e 10[,)42-∈,故由(ii )可得31(1)e 2x x x -++≤1. 故当12a ≥时,g (x )≤1.综上,a 的取值范围是27e [,)4-+∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年高考全国Ⅱ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤;(3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.【解析】(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+ 22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3f π=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx x x333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以222233sin sin 2sin 2)4n nnn x xx ≤=.10.【2020年高考全国Ⅲ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【解析】(1)2()3f x x b '=+. 依题意得1()02f '=,即304b +=.故34b =-.(2)由(1)知3(3)4f x x x c -=+,2()334f x x '=-. 令)0(f x '=,解得12x =-或12x =.()f x '与()f x 的情况为:x 1()2-∞-,12- 11()22-, 12 1()2∞,+ ()f x ' + 0 – 0 + ()f x14c +14c -因为11(1)()24f f c =-=+,所以当14c <-时,()f x 只有大于1的零点.因为11(1)()24f f c -==-,所以当14c >时,f (x )只有小于–1的零点.由题设可知1144c -≤≤,当1=4c -时,()f x 只有两个零点12-和1.当1=4c 时,()f x 只有两个零点–1和12.当1144c -<<时,()f x 有三个等点x 1,x 2,x 3,且11(1,)2x ∈--,211(,)22x ∈-,31(,1)2x ∈.综上,若()f x 有一个绝对值不大于1的零点,则()f x 所有零点的绝对值都不大于1.11.【2020年高考天津】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【解析】(Ⅰ)(i )当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-.(ii )依题意,323()36ln ,(0,)g x x x x x x=-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 12.【2020年高考北京】已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.13.【2020年高考浙江】已知12a <≤,函数()e xf x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:(ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【解析】(Ⅰ)因为(0)10f a =-<,22(2)e 2e 40f a =--≥->,所以()y f x =在(0,)+∞上存在零点.因为()e 1x f x '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增, 所以函数以()y f x =在(0,)+∞上有唯一零点.(Ⅱ)(ⅰ)令21()e 1(0)2xg x x x x =---≥,()e 1()1x g'x x f x a =--=+-,由(Ⅰ)知函数()g'x 在[0,)+∞上单调递增,故当0x >时,()(0)0g'x g'>=, 所以函数()g x 在[0,)+∞单调递增,故()(0)0g x g ≥=.由0g ≥得00()f a f x =≥=,因为()f x 在[0,)+∞0x .令2()e 1(01)x h x x x x =---≤≤,()e 21x h'x x =--,令1()e 21(01)x h x x x =--≤≤,1()e 2xh'x =-,所以故当01x <<时,1()0h x <,即()0h'x <,所以()h x 在[0,1]单调递减, 因此当01x ≤≤时,()(0)0h x h ≤=.由0h ≤得00()f a f x =≤=,因为()f x 在[0,)+∞0x .0x ≤≤(ⅱ)令()e (e 1)1x u x x =---,()e (e 1)x u'x =--,所以当1x >时,()0u'x >, 故函数()u x 在区间[1,)+∞上单调递增,因此()(1)0u x u ≥=.由00e x x a =+可得022000000(e )()(e 1)(e 2)(e 1)x a a x f x f x a x a x ax =+=-+-≥-,由0x ≥得00(e )(e 1)(1)xx f a a ≥--.14.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E'为多少米时,桥墩CD 与EF 的总造价最低?【解析】(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯= 则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+ 3211601606800EF y x x =-=+-. 因为80,CE =所以80O'C x =-.设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ', 得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题. 15.【2020年高考江苏】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎤⎣⎦,求证:7n m -≤.【解析】(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立,所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立. 因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤(3)①当1t ≤≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆---- 则642=538t t t ∆-++.记64253()18(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,上是减函数,则()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤,因此21n m x x -≤-=≤ ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+-令()0v t '=,得t .当(0t ∈时,()0v t '<,()v t 是减函数;当1)t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为m n ⊆[][,,所以1n m -≤<③当0t <时,因为()f x ,()g x 均为偶函数,因此n m -≤综上所述,n m -≤【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.16.【2020年新高考全国Ⅰ卷】已知函数1()e ln ln x f x a x a -=-+.(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.【解析】()f x 的定义域为(0,)+∞,11()e x f x a x-'=-. (1)当e a =时,()e ln 1x f x x =-+,(1)e 1f '=-,曲线()y f x =在点(1,(1))f 处的切线方程为(e 1)(e 1)(1)y x -+=--,即(e 1)2y x =-+. 直线(e 1)2y x =-+在x 轴,y 轴上的截距分别为2e 1--,2. 因此所求三角形的面积为2e 1-. (2)当01a <<时,(1)ln 1f a a =+<.当1a =时,1()e ln x f x x -=-,11()e x f x x-'=-. 当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>.所以当1x =时,()f x 取得最小值,最小值为(1)1f =,从而()1f x ≥. 当1a >时,11()e ln ln e ln 1x x f x a x a x --=-+≥-≥. 综上,a 的取值范围是[1,)+∞.【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.17.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫<⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤ ⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可. 18.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力.19.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1. 【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 20.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =, 所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-. (Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x 2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 21.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则。
(江苏专用)2018版高考数学专题复习 专题3 导数及其应用 第18
练 用导数研究函数的单调性练习 理
1.函数y =2
x 2-ln x 的单调递减区间为________. 2.(2016·常州模拟)若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是____________.
3.(2016·镇江一模)若函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x ln x ,则不等式f (x )<-e 的解集为______________.
4.(2016·镇江模拟)已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是____________.
5.(2017·江苏扬州中学月考)若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是____________________.
6.已知函数f (x )=kx 3+3(k -1)x 2-k 2+1(k >0),
(1)若函数f (x )的单调递减区间是(0,4),则实数k 的值为____________;
(2)若在(0,4)上为减函数,则实数k 的取值范围是____________.
7.已知函数y =-13
x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________________.
8.(2016·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是______________________.
9.(2016·常州武进期中)已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-
∞,0]时,恒有xf ′(x )<f (-x ),则满足13
(2x -1)f (2x -1)<f (3)的实数x 的取值范围是________.
10.(2016·天津十二区县重点高中第一次联考)已知函数f (x )=ln x -1x
,g (x )=ax +b . (1)若函数h (x )=f (x )-g (x )在(0,+∞)上单调递增,求实数a 的取值范围;
(2)若直线g (x )=ax +b 是函数f (x )=ln x -1x
的图象的切线,求a +b 的最小值. 答案精析
的单调性
1.(0,1] 2.(-∞,0)
3.(-∞,-e)
解析
当x >0时,f (x )=x ln x ,则f ′(x )=ln x +1.令f ′(x )=ln x +1=0,
解得x =1e ,易知当x >0时,f (x )min =f (1e )=-1e
>-e ,故只能在x <0时,求解f (x )<-e.因为函数f (x )为奇函数,在同一平面直角坐标系中作出f (x )的大致图象如图所示,根据函数单调性,且f (-e)=-f (e)=-e·ln e=-e ,得所求不等式的解集为x <-e. 4.⎣⎢⎡⎭
⎪⎫34,+∞ 5.[12
,+∞) 解析 f ′(x )=2mx +1x -2,由题意知,f ′(x )≥0在(0,+∞)上恒成立,即2m ≥-1x 2+2x
在(0,+∞)上恒成立,令t =1x
>0,则2m ≥-t 2+2t , 又∵(-t 2+2t )max =1,
∴2m ≥1,∴m ≥12
. 6.(1)13 (2)⎝ ⎛⎦
⎥⎤0,13 解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13
. (2)由f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)≤0,解得k ≤13.又k >0,故0<k ≤13
. 7.(-∞,-1)∪(3,+∞)
解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立, 所以Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,
所以-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.
8.(-∞,2ln 2-2]
解析 因为f (x )=x 2-e x
-ax ,
所以f ′(x )=2x -e x -a ,
因为函数f (x )=x 2-e x
-ax 在R 上存在单调递增区间,
所以f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,
设g (x )=2x -e x ,则g ′(x )=2-e x ,
令g ′(x )=0,
解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,
当x >ln 2时,g ′(x )<0,g (x )单调递减,
所以当x =ln 2时,g (x )取得最大值, g (x )max =g (ln 2)=2ln 2-2,
所以a ≤2ln 2-2.
9.(-1,2)
解析 令F (x )=xf (x ),
则F ′(x )=f (x )+xf ′(x ),
∵当x ∈(-∞,0]时,xf ′(x )<f (-x )恒成立,且由题意知f (-x )=-f (x ), ∵当x ∈(-∞,0]时,F ′(x )<0,即F (x )在(-∞,0]上递减.
不等式13
(2x -1)f (2x -1)<f (3)可化为(2x -1)f (2x -1)<3f (3), 即F (2x -1)<F (3),
易知F (x )为偶函数,
所以不等式可化为|2x -1|<3,
解得-1<x <2.
10.解 (1)h (x )=f (x )-g (x )=ln x -1x -ax -b ,则h ′(x )=1x +1x 2-a . ∵h (x )=f (x )-g (x )在(0,+∞)上单调递增,
∴对∀x >0,都有h ′(x )=1x +1x 2-a ≥0, 即对∀x >0,都有a ≤1x +1x 2. ∵1x +1x 2>0, ∴a ≤0.
故实数a 的取值范围是(-∞,0].
(2)设切点(x 0,ln x 0-1x 0),则 切线方程为y -(ln x 0-1x 0
) =(1x 0+1x 20
)(x -x 0), 即y =(1x 0+1x 20
)x -(1x 0+1x 20)x 0+ (ln x 0-1x 0
),即 y =(1x 0+1x 20)x +(ln x 0-2x 0
-1), 令1x 0
=t >0,由题意得 a =1x 0+1x 20=t +t 2,b =ln x 0-2
x 0
-1 =-ln t -2t -1,
令a +b =φ(t )=-ln t +t 2-t -1,则 φ′(t )=-1t +2t -1=2t +1t -1t ,
当t ∈(0,1)时,φ′(t )<0,φ(t )在(0,1)上单调递减;
当t ∈(1,+∞)时,φ′(t )>0,φ(t )在(1,+∞)上单调递增. ∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1.。