时序逻辑电路的组成及分析方法案例说明
- 格式:docx
- 大小:83.43 KB
- 文档页数:4
第六章时序逻辑电路典型例题分析第一部分:例题剖析触发器分析例1在教材图6.1所示的基本RS触发器电路中,若⎺R、⎺S 的波形如图P6.1(a)和(b),试分别画出对应的Q和⎺Q端的波形。
解:基本RS触发器,当⎺R、⎺S同时为0时,输出端Q、⎺Q均为1,当⎺R=0、⎺S=1时,输出端Q为0、⎺Q为1,当⎺R=⎺S=1时,输出保持原态不变,当⎺R=1、⎺S=0时,输出端Q为1、⎺Q为0,根据给定的输入波形,输出端对应波形分别见答图P6.1(a)和(b)。
需要注意的是,图(a)中,当⎺R、⎺S同时由0(见图中t1)变为1时,输出端的状态分析时不好确定(见图中t2),图中用虚线表示。
例2 在教材图6.2.3(a)所示的门控RS触发器电路中,若输入S 、R和E的波形如图P6.2(a)和(b),试分别画出对应的输出Q和⎺Q端的波形。
解:门控RS触发器,当E=1时,实现基本RS触发器功能,即:R=0(⎺R=1)、S=1(⎺S=0),输出端Q为1、⎺Q为0;R=1(⎺R=0)、S=0(⎺S=1)输出端Q为0、⎺Q为1;当E=0时,输出保持原态不变。
输出端波形见答图P6.2。
例3在教材图6.2.5所示的D锁存器电路中,若输入D、E的波形如图P6.3(a)和(b)所示,试分别对应地画出输出Q和Q端的波形。
解:D锁存器,当E=1时,实现D锁存器功能,即:Q n+1=D,当E=0时,输出保持原态不变。
输出端波形见答图P6.3。
例4在图P6.4(a)所示的四个边沿触发器中,若已知CP、A、B的波形如图(b)所示,试对应画出其输出Q端的波形。
设触发器的初始状态均为0。
解:图中各电路为具有异步控制信号的边沿触发器。
图(a)为边沿D触发器,CP上升沿触发,Q1n+1= A,异步控制端S D接信号C(R D=0),当C=1时,触发器被异步置位,输出Q n+1=1 ;图(b)为边沿JK触发器,CP上升沿触发,Q2n+1= A⎺Q2n +⎺BQ2n,异步控制端⎺R D接信号C(⎺S D =1),当C=0时,触发器被异步复位,输出Q n+1=0;图(c)为边沿D触发器,CP下降沿触发,Q3n+1= A,异步控制端⎺S D接信号C(⎺R D =1),当C=0时,触发器被异步置位,输出Q n+1=1;图(d)为边沿JK触发器,CP下降沿触发,Q4n+1= A⎺Q4n +⎺BQ4n,异步控制端R D接信号C(S D =0),当C=1时,触发器被异步复位,输出Q n+1=0。
时序逻辑电路的分析方法时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。
同步时序逻辑电路的分析方法同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。
1、基本分析步骤1)写方程式:输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。
驱动方程:各触发器输入端的逻辑表达式。
状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。
2)列状态转换真值表:将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。
如现态的起始值已给定时,则从给定值开始计算。
如没有给定时,则可设定一个现态起始值依次进行计算。
3)逻辑功能的说明:根据状态转换真值表来说明电路的逻辑功能。
4)画状态转换图和时序图:状态转换图:是指电路由现态转换到次态的示意图。
时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。
5)检验电路能否自启动关于电路的自启动问题和检验方法,在下例中得到说明。
2、分析举例例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。
解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。
因此,它是一个同步时序逻辑电路,时钟方程可以不写。
①写方程式:输出方程:驱动方程:状态方程:②列状态转换真值表:状态转换真值表的作法是:从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。
把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。
依次类推,直到次态值又回到了第一个现态值“000”。
现态次态输出Y00101000110110010100010010101010001③逻辑功能说明:电路在输入第6个计数脉冲CP后,返回原来的状态,同时输出端Y 输出一个进位脉冲。
时序逻辑电路的状态图与状态表分析方法时序逻辑电路是一种在特定时间下根据输入信号的状态而改变输出信号的电路。
对于复杂的时序逻辑电路,为了更好地理解和分析其行为,我们可以使用状态图和状态表这两种分析方法。
一、状态图分析方法状态图是时序逻辑电路的状态及其转换之间关系的图形化表示。
它通常由一个或多个状态框和状态转换线组成。
1. 状态框:状态框代表一个特定的状态,一般用一个圆形或椭圆形表示,内部标识状态的名称。
2. 状态转换线:状态转换线表示状态之间的转换关系,一般用带箭头的直线表示。
箭头指向的状态表示由当前状态经过某个输入信号的改变而转换到的新状态。
绘制状态图的步骤如下:1. 根据时序逻辑电路的功能和要求,确定可能存在的状态数量及其命名。
2. 确定输入信号的类型和数量,并将其标记在状态图中。
3. 分析每个状态与输入信号之间的状态转换关系,并将其用状态转换线表示。
4. 绘制出完整的状态图。
通过观察状态图,我们可以清楚地了解时序逻辑电路的状态之间的转换关系,并可以判断其行为是否符合设计要求。
二、状态表分析方法状态表是一种简洁而直观的分析方法,它是将时序逻辑电路的各个状态及其输入信号和输出信号以表格形式表示出来。
状态表可以清晰地展示电路的状态转换规律。
状态表的组成如下:1. 状态列:表示电路的各个状态。
2. 输入列:表示输入信号的情况。
3. 输出列:表示输出信号的情况。
绘制状态表的步骤如下:1. 确定输入信号及其取值范围,并编写对应的输入列。
2. 确定状态之间的转换关系,并记录在状态表的状态列中。
3. 分析每个状态下的输出信号,并在输出列中进行记录。
通过状态表的分析,我们可以准确地了解每个状态下输入信号和输出信号的对应关系,并可以找出其中的规律,以进一步优化电路的设计和实现。
综上所述,时序逻辑电路的状态图与状态表分析方法是两种常用且有效的分析工具。
通过状态图和状态表的绘制和分析,我们可以更好地理解时序逻辑电路的行为,并能够进行合理的电路设计和调试。
时序逻辑电路的设计与时序分析方法时序逻辑电路是数字电路中的一种重要类型,用于处理按时间顺序发生的事件。
它在各种电子设备中被广泛应用,例如计算机、通信设备等。
本文将介绍时序逻辑电路的设计原理和常用的时序分析方法。
一、时序逻辑电路的设计原理时序逻辑电路是根据输入信号的状态和时钟信号的边沿来确定输出信号的状态。
它的设计原理包括以下几个方面:1. 状态转移:时序逻辑电路的状态是通过状态转移实现的。
状态转移可以使用触发器实现,触发器是一种存储元件,能够存储和改变信号的状态。
常见的触发器有D触发器、JK触发器等。
2. 时钟信号:时序逻辑电路中的时钟信号是控制状态转移的重要信号。
时钟信号通常为周期性的方波信号,它的上升沿或下降沿触发状态转移操作。
3. 同步与异步:时序逻辑电路可以是同步的或异步的。
同步电路通过时钟信号进行状态转移,多个状态转移操作在同一时钟周期内完成。
异步电路不需要时钟信号,根据输入信号的状态直接进行状态转移。
二、时序分析方法时序分析是对时序逻辑电路的功能和性能进行分析的过程,它可以帮助设计人员检查和验证电路的正确性和可靠性。
以下是几种常用的时序分析方法:1. 序时关系图:序时关系图是一种图形表示方法,它直观地显示了输入信号和输出信号之间的时间关系。
通过分析序时关系图,可以确定电路的特性,例如最小延迟时间、最大延迟时间等。
2. 状态表和状态图:状态表是对时序逻辑电路状态转移过程的描述表格,其中包括当前状态、输入信号和下一个状态的对应关系。
状态图是对状态表的图形化表示,用图形的方式展示状态和状态转移之间的关系。
3. 时钟周期分析:时钟周期分析是对时序逻辑电路的时钟频率和时钟周期进行分析,以确保电路能够在规定的时钟周期内完成状态转移操作。
常用的时钟周期分析方法包括最小周期分析和最大频率分析。
4. 时序仿真:时序仿真是通过计算机模拟时序逻辑电路的行为来验证电路的功能和性能。
通过输入不同的信号序列,可以观察和分析电路的输出响应,以判断电路设计是否正确。
时序逻辑电路的分析方法1.时序图分析时序图是描述时序逻辑电路中不同信号随时间变化的图形表示。
时序图分析方法是通过绘制输入输出信号随时间变化的波形图,来观察信号之间的时序关系。
时序图分析的步骤如下:1)根据电路的逻辑功能,确定所需的时钟信号和输入信号。
2)根据电路的逻辑关系,建立出波形图的坐标系,确定时间轴和信号轴。
3)按照时钟信号的不同变化情况(上升沿、下降沿),在波形图中绘制相应的路径。
4)观察各个信号之间的时序关系,分析电路的逻辑功能和输出结果。
时序图分析方法的优点是直观、简单,可以清楚地显示信号的时序关系。
但它对于复杂的电路设计来说,图形绘制和分析过程相对繁琐,需要一定的经验和技巧。
2.状态表分析状态表分析方法是通过定义不同输入信号下的状态转移关系,来描述时序逻辑电路的行为。
状态表可以用表格的形式表示,其中包含了输入信号、当前状态、下一个状态和输出信号等信息。
状态表分析的步骤如下:1)根据电路的逻辑功能和输入信号,列出电路的状态转移关系。
2)构建状态表,定义不同输入信号下的状态转移关系和输出信号。
3)根据状态表,逐步推导出电路的状态转移路径和输出结果。
状态表分析方法的优点是逻辑严谨、结构清晰,适用于对于复杂的状态转移关系进行分析和设计。
但它对于大规模的电路设计来说,状态表会非常庞大,而且容易出现错误,需要仔细的计算和推导。
3.状态图分析状态图分析方法是通过绘制状态转移图,来描述时序逻辑电路中状态之间的转移关系。
状态图是由状态、输入信号、输出信号和状态转移路径等构成。
状态图分析的步骤如下:1)根据电路的逻辑功能和输入信号,确定电路的状态和状态转移关系。
2)构建状态图,按照状态的转移路径和输入信号绘制状态图。
3)根据状态图,分析电路的逻辑功能和输出结果。
状态图分析方法的优点是直观、清晰,可以清楚地描述状态之间的转移关系。
它可以帮助设计者对于电路的状态转移关系进行分析和调试。
但状态图也会随着电路规模的增大而变得复杂,需要仔细分析和理解。
电路中的时序电路及其应用时序电路,是指能够根据输入信号的特点和时刻的先后顺序进行控制和操作的电路。
在现代电子技术中,时序电路的应用广泛,涉及到计算机、通信、数据处理等领域。
本文将从时序电路的基本概念、组成要素以及应用案例三个方面逐一进行论述。
一、时序电路的基本概念时序电路是根据电路输入信号的特性和产生的时序发展过程,在电路中加入相应的逻辑门、触发器、计数器、时钟等组成的。
它能根据输入信号的特点和时刻的先后顺序,对输出信号进行控制和操作,具有存储和记忆功能。
时序电路的设计和实现需要考虑以下几个方面:1. 时钟信号:时序电路中的时钟信号起到了同步作用,指示电路中的操作时刻。
通过时钟信号的控制,时序电路能够按照特定的顺序执行相应的逻辑操作。
2. 输入端:时序电路的输入可以是外部信号,也可以是来自其他电路的输出信号。
输入信号的特性和时刻的先后顺序,是时序电路的设计和操作的基础。
3. 时序逻辑电路:时序逻辑电路是时序电路的核心组成部分。
通过逻辑门、触发器、计数器等器件的组合和连接,实现时序电路的功能。
逻辑电路中的逻辑门决定了输出信号的逻辑关系,而触发器和计数器则能够实现信号的存储和时序的处理。
4. 输出端:时序电路的输出可以是某种状态信号,也可以是控制信号。
输出信号的形式和时刻,取决于时序电路的设计目标和需要实现的功能。
二、时序电路的组成要素时序电路的组成要素包括时钟信号、触发器、计数器和时序逻辑电路。
1. 时钟信号:时钟信号是时序电路中的核心信号,支持时序电路按照特定的时间顺序进行操作。
时钟信号的稳定性和频率精度对于时序电路的正常运行至关重要。
通常,时钟信号由晶体振荡器或稳定的外部时钟源提供。
2. 触发器:触发器是时序电路中重要的存储元件,用于存储、记忆和控制输入和输出信号之间的关系。
常见的触发器包括D触发器、JK 触发器和T触发器等。
触发器的输入端包括时钟信号、预设信号、清零信号和输入信号等,根据输入信号的变化和触发器内部的逻辑电路原理,输出信号状态会发生相应的变化。
实验十一时序逻辑电路的设计与测试一、实验目的1.掌握时序逻辑电路的设计原理与方法。
2.掌握时序逻辑电路的实验测试方法。
二、实验原理该实验是基于JK触发器的时序逻辑电路设计,要求设计出符合一定规律的红、绿、黄三色亮灭循环显示的电路,并且在实验板上搭建实现出来。
主要的设计和测试步骤如下:(1)根据设计的循环显示要求,列出有关Q3Q2Q1状态表;(2)根据状态表,写出各触发器的输入端J和K的状态;(3)画出各触发器的输入端J和K关于Q3Q2Q1的卡诺图;(4)确定各触发器的数软J和K的最简方程;(5)根据所得的最简方程设计相应的时序逻辑电路;(6)在实验板上,有步骤有次序的搭建实验电路,测试所设计的电路是否满足要求。
具体设计过程参见【附录二】提供的实例。
三、预习要求1.查阅附录芯片CC4027B和芯片74LS00的管脚定义。
2.阅读理论教材关于时序逻辑电路的内容,掌握实验的理论基础。
四、实验设备与仪器1.数字电路实验板(箱);2.芯片:CC4027B;74LS00;74LS20。
五、实验内容请任意选择下列一组彩灯循环显示的任务要求,设计相应的时序电路,并搭建实验线路测试之。
1.设计任务(一)2.设计任务(二)3.设计任务(三)4.设计任务(四)5.设计任务(五)6.设计任务(六)7.设计任务(七)8.设计任务(八)六、实验报告1.根据实验内容的设计要求,完成实验时序电路的设计和测试。
2.小结时序逻辑电路的设计思路与测试方法。
3.实验的心得与体会。
七、实验注意事项1.进行实验连线的过程中,注意有步骤的接线,避免多接和漏接的情况。
2.在设计好的时序逻辑电路中,若管脚没有接任何信号,处于悬空状态,注意最好给其提供高电平信号。
3.实验结束或者改接线路时,注意断开电源,保护芯片。
八、思考题1.实验要求设计的时序电路,可否设计成异步时序逻辑电路?这相对于同步时序逻辑电路有什么不同?2.能否设计一个时序逻辑电路,若初态为“000”是一个“000—〉001—〉010—〉011”循环的加法计数器,若初态为“111”是一个“111—〉110—〉101—〉100”循环的减法计数器?试设计之。
第六章时序逻辑电路时序逻辑电路简称时序电路,与组合逻辑电路并驾齐驱,是数字电路两大重要分支之一。
本章首先介绍时序逻辑电路的基本概念、特点及时序逻辑电路的一般分析方法。
然后重点讨论典型时序逻辑部件计数器和寄存器的工作原理、逻辑功能、集成芯片及其使用方法及典型应用。
最后简要介绍同步时序逻辑电路的设计方法。
6.1 时序逻辑电路的基本概念一.时序逻辑电路的结构及特点时序逻辑电路——电路任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。
时序电路中必须含有具有记忆能力的存储器件。
存储器件的种类很多,如触发器、延迟线、磁性器件等,但最常用的是触发器。
由触发器作存储器件的时序电路的基本结构框图如图6.1.1所示,一般来说,它由组和电路和触发器两部分组成。
1 X i X Z1 Z jÊäÈëÐźÅÐźÅÊä³ö·¢Æ÷´¥·¢ÆÐźÅÊä³öÐźÅͼ6.1.1 ʱÐòÂß¼µç·¿òͼ二.时序逻辑电路的分类按照电路状态转换情况不同,时序电路分为同步时序电路和异步时序电路两大类。
按照电路中输出变量是否和输入变量直接相关,时序电路又分为米里(Mealy)型电路和莫尔(Moore)型电路。
米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X有关。
实验五时序逻辑电路(计数器和寄存器)-实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。
2.掌握常用中规模集成计数器的逻辑功能和使用方法。
二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。
三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。
在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。
2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。
74LSl63是同步置数、同步清零的4位二进制加法计数器。
除清零为同步外,其他功能与74LSl61相同。
二者的外部引脚图也相同,如图5.1所示。
表5.1 74LSl61(74LS163)的功能表清零预置使能时钟预置数据输入输出工作模式R D LD EP ET CP A B C D Q A Q B Q C Q D0 ××××()××××0 0 0 0 异步清零1 0 ××D A D B D C D D D A D B D C D D同步置数1 1 0 ××××××保持数据保持1 1 ×0 ×××××保持数据保持1 1 1 1 ××××计数加1计数3.集成计数器的应用——实现任意M进制计数器一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。
第二类是由集成二进制计数器构成计数器。
第三类是由移位寄存器构成的移位寄存型计数器。
第一类,可利用时序逻辑电路的设计方法步骤进行设计。
时序逻辑电路的描述与分析方法
时序规律电路任一时刻的输出状态不仅取决于当时的输入信号,还与电路原来的状态有关,即时序规律电路具有“记忆”的功能。
因而时序规律电路中必需含有记忆力量的存储器件,最常用的是触发器。
时序规律电路可用下列3个方程组来描述,即
(驱动方程)(状态方程)(输出方程) 分析时序规律电路也就是找出该时序规律电路的规律功能,即找出时序规律电路的状态和输出变量在输入变量和时钟信号作用下的变化规律。
因此,只要写出时序规律电路的这3组方程,它的规律功能也就描述清晰了。
但是用3组方程描述电路的规律功能特别不直观,不能直接看出电路状态和输出变量的与输入变量和时钟信号之间的对应关系,为了直观地描述时序电路的规律功能,还有其他的表示方法:状态转换表、状态转换图和时序图。
下面结合时序电路的分析,详细介绍这3种时序电路规律功能的描述方法。
分析步骤:
第一步:分析电路结构,写出各触发器的驱动方程。
其次步:将驱动方程代入相应触发器的特性方程,求得各触发器的次态方程,也就是时序规律电路的状态方程。
第三步:依据电路图写出输出方程。
第四步:依据状态方程和输出方程,列出该时序带电路的状态表,画出状态图或时序图。
时序逻辑电路的组成及分析方法案例说明
一、时序逻辑电路的组成
时序逻辑电路由组合逻辑电路和存储电路两部分组成,结构框图如图5-1所示。
图中外部输入信号用X (x 1,x 2,… ,x n )表示;电路的输出信号用Y (y 1,y 2,… ,y m )表示;存储电路的输入信号用Z (z 1,z 2,… ,z k )表示;存储电路的输出信号和组合逻辑电路的内部输入信号用Q (q 1,q 2,… ,q j )表示。
x x y 1
y m
图8.38 时序逻辑电路的结构框图
可见,为了实现时序逻辑电路的逻辑功能,电路中必须包含存储电路,而且存储电路的输出还必须反馈到输入端,与外部输入信号一起决定电路的输出状态。
存储电路通常由触发器组成。
2、时序逻辑电路逻辑功能的描述方法
用于描述触发器逻辑功能的各种方法,一般也适用于描述时序逻辑电路的逻辑功能,主要有以下几种。
(1)逻辑表达式
图8.3中的几种信号之间的逻辑关系可用下列逻辑表达式来描述:
Y =F (X ,Q n ) Z =G (X ,Q n ) Q n +1=H (Z ,Q n )
它们依次为输出方程、状态方程和存储电路的驱动方程。
由逻辑表达式可见电路的输出Y 不仅与当时的输入X 有关,而且与存储电路的状态Q n 有关。
(2)状态转换真值表
状态转换真值表反映了时序逻辑电路的输出Y 、次态Q n +1与其输入X 、现态Q n 的对应关系,又称状态转换表。
状态转换表可由逻辑表达式获得。
(3)状态转换图
状态转换图又称状态图,是状态转换表的图形表示,它反映了时序逻辑电路状态的转换与输入、输出取值的规律。
(4)波形图
波形图又称为时序图,是电路在时钟脉冲序列CP的作用下,电路的状态、输出随时间变化的波形。
应用波形图,便于通过实验的方法检查时序逻辑电路的逻辑功能。
二、时序逻辑电路的分析方法
1.时序逻辑电路的分类
时序逻辑电路按存储电路中的触发器是否同时动作分为同步时序逻辑电路和异步时序逻辑电路两种。
在同步时序逻辑电路中,所有的触发器都由同一个时钟脉冲CP控制,状态变化同时进行。
而在异步时序逻辑电路中,各触发器没有统一的时钟脉冲信号,状态变化不是同时发生的,而是有先有后。
2.时序逻辑电路的分析步骤
分析时序逻辑电路就是找出给定时序逻辑电路的逻辑功能和工作特点。
分析同步时序逻辑电路时可不考虑时钟,分析步骤如下:
(1)根据给定电路写出其时钟方程、驱动方程、输出方程;
(2)将各驱动方程代入相应触发器的特性方程,得出与电路相一致的状态方程。
(3)进行状态计算。
把电路的输入和现态各种可能取值组合代入状态方程和输出方程进行计算,得到相应的次态和输出。
(4)列状态转换表。
画状态图或时序图。
(5)用文字描述电路的逻辑功能。
3.案例分析
分析图8.39所示时序逻辑电路的逻辑功能。
图8.39 逻辑电路
解:该时序电路的存储电路由一个主从JK触发器和一个T触发器构成,受统一的时钟CP控制,为同步时序逻辑电路。
T触发器T端悬空相当于置1。
(1)列逻辑表达式。
输出方程及触发器的驱动方程分别为
Y =Q 0n ·Q 1n T =1;J =K =Q 0n
将驱动方程代入T 触发器和JK 触发器的特性方程,得电路的状态方程为:
Q 0n +1=n Q 0 Q 1n +1= Q 0n n Q 1 +n Q 0 Q 1n
(2)列状态转换表。
设初始状态Q 1Q 0=00,代入输出方程得到Y =0。
在第一个时钟CP 下降沿到来时,由状态方程计算出次态Q 0n +1
= n Q 0=0=1、Q 1n +1
=0;再以得到的次态作为新的初态代入状态方程得到
下一个次态。
依次类推,便可得到表8.8的状态转换表。
表8.8 状态转换表
(3)画状态转换图和波形图。
状态转换图和波形图如图8.40所示。
Q 1Q 0
X/Y
(a )
(b )
图8.40状态转换图和波形图
(4)电路的逻辑功能。
由以上分析可知,此电路是一个两位二进制计数器。
每出现一个时钟脉冲CP,Q1Q0的值就按二进制数加法法则加1,当4个时钟脉冲作用后,又恢复到初态,而每经过这样一个周期性变化电路就输出一个高电平。