应力张量例题
- 格式:ppt
- 大小:1.90 MB
- 文档页数:69
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
练习题Ⅱ(金属所)1. 用下标符号证明:C B A B C A C B A )()()(⋅-⋅=⨯⨯。
2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈3. 证明ijk klm =(δil δjm -δim δjl )4. 证明ijk ikj =-6。
5. 证明ijkmik =-2δjm 。
6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
7. B 为矢量,M 为二阶张量,证明:(div M )⋅B =div(M ⋅B )-{ (B ∇)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。
⎪⎪⎪⎭⎫ ⎝⎛----=211121112)(ij σ9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。
并验证主方向是相互正交的。
⎪⎪⎪⎭⎫ ⎝⎛=740473037)(ij σ10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1cx 3,u 3= bx 2+cx 3;其中a 、b 、c 皆为常数。
求这个位移场的应变张量Γ。
11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗?⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=32222111216112226226)(x x x x x x x ij ε12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。
练习题Ⅱ解答(金属所)1. 用下标符号证明: C B A B C A C B A )()()(⋅-⋅=⨯⨯。
解:CB A BC A e e e e e C B C B A )()()(()()()(⋅-⋅=-==∈∈=∈=∈⨯=∈⨯⨯i i j j j i j i jl im jm il m l j i klm ijk m l j ik m l klm j ijk i k j ijk c b a c b a )δ-δδδc b a c b a c b a a 2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈解:a ij 的行列式为333231232221131211det a a a a a a a a a A = 当行列式行与行、列与列对换一次行列式的值就变号一次,任意换行后有A a a a a a a a a a lmn n n n m m m l l l det 321321321=∈ 任意换列后有A a a a a a a a a a ijk kjik j i kj i det 333222111=∈ 因此,任意行与行、列与列交换后有A a a a a a a a a a lmn ijk nkmkninj mj mi nimi li det ∈=∈ 令a ij =δij ,det A =1,则有lmn ijk nknj ni mk mj mi lklj li ∈=∈δδδδδδδδδ 3. 证明ijk klm =(δil δjm -δim δjl ) 解:根据上题的结果,有)()3()3()()(im jl mj li li mj mj li mi lj mj li mi lj jl im li kj mk ki mj lk mi lj kk mj li kk mi lk kj mk lj ki mkmj mi lklj li kkkj ki klm ijk δδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδ-=++-++=++-++==∈∈4. 证明ijk ikj =-6解:ijk ikj =-ijk kij =-(δii δjj -δij δji )=-(33-δii )=-(9-3)=-65. 证明ijk mik =-2δjm解:ijk mik =ijk kmi =(δim δji -δii δjm )= (δjm -3δjm )=-2δjm6.证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
第一章1-10. 已知一点的应力状态10100015520⨯⎪⎪⎪⎭⎫ ⎝⎛--=ij σMPa ,试求该应力空间中122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少?解:若平面方程为Ax+By+Cz+D=0,则方向余弦为:222CB A A ++=l ,222CB A B ++=m ,222CB AC n ++=因此:312)(-211222=++=l ,322)(-212-222-=++=m ;322)(-212n 222=++= S x =σx l +τxy m +τxz n=3100325031200=⨯-⨯S y =τxy l +σy m +τzy n = 3350321503150=⨯+⨯S z =τxz l +τyz m +σz n=320032100-=⨯-11191000323200323350313100S S S -=-=⨯-⨯-⨯=++=n m l z y x σ125003200335031002222222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++=z y x S S S S4.1391000125002=⎪⎭⎫⎝⎛-=τ1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为:⎪⎪⎪⎭⎫⎝⎛--=1030205040100 ij σ,求出主应力,应力偏量及球张量,八面体应力。
解:=1J z y x σσσ++=100+50-10=140=2J 222xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10)-402-(-20)2-302=600=3J 321σσσ=2222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000019200060014023=-+-σσσσ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7;7.5630203.3403.53⎪⎪⎪⎭⎫ ⎝⎛--=' ij σ ;7.460007.4607.46m ⎪⎪⎪⎭⎫ ⎝⎛=i σσ8=σm =46.71.39)()()(312132322218=-+-+-±=σσσσσστ 1-12设物体内的应力场为3126x c xy x +-=σ,2223xy c y -=σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。
2019年固体力学与岩石力学基础例题第二章 应力分析例题2.1 设某点的应力张量为012120201⎛⎫ ⎪= ⎪ ⎪⎝⎭σ试求过该点平面12331x x x ++=上的应力矢量,并求正应力矢量和切应力矢量。
解:设该平面的法线矢量为:v =(l ,m ,n)由几何关系知:l 1=m 3=n 1联立方程:l 2+m 2+n 2=1于是解得:l =√1111,m =3√1111,n =√1111所以,该平面上的应力矢量的三个分量分别为:T x =σx l +τyx m +τzx n =0×√1111+1×3√1111+2×√1111=5√1111 T y =τyx l +σy m +τzy n =1×√1111+2×3√1111+0×√1111=7√1111 T z =τzx l +τzy m +σz n =2×√1111+0×3√1111+1×√1111=3√1111该平面的法向应力和切向应力为:σv =T x l +T y m +T z n =5√1111×√1111+7√1111×3√1111+3√1111×√1111=2911τv 2=T v 2−σv 2=8311−841121=72121τv =6√211解答完毕。
例题2.2 设有图2.1示三角形水坝,试列出OP 面(光滑面)的应力边界条件。
图2.1解:在OP 面上有应力边界条件:(σx1x2)x1=0=γx 2 (τx1x2)x1=0=0式中,γ为水的比重。
解答完毕。
例题2.3 已知一点的应力张量为2201211210σ⎛⎫ ⎪ ⎪ ⎪⎝⎭过该点的一个作用面,作用面上的应力矢量=N 0,求: 1)22σ;2)作用面法线与坐标系的夹角余弦(,,)l m n 。
解:由于具有一个平面,使得在过改点的一个平面上,应力矢量为0,即:0×l +1×m +2×n =0 1×l +σ22×m +1×n =0 2×l +1×m +0×n =0又根据几何关系:l 2+m 2+n 2=1解得:σ22=12l =√66 m =−√63n =√66解答完毕。
一 一点的应力状态与应力张量二 主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为ij S σ==x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦如图1-1所示.在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系.通常,我们称这种具有特定变换关系的一些量为张量.式(1-1)就是应力张量,它是二阶张量.因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。
已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。
在P 点处取出一无限小四面体oabc (图1-2)它的三个面分别与x ,y ,z 三个轴相垂直。
另一方面即任意斜面,它的法线N,其方向余弦为l ,m ,n 。
分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。
x y z dF ldF dF mdF dF ndF ⎫=⎪=⎬⎪=⎭(1。
2)在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力N σ及切向剪应力N τ,即222N N N P στ=+N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ⎫=++⎪=++⎬⎪=++⎭求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1—5而剪应力则由式1—5得 2N τ=2N P —2N σ在空间应力状态下一点的应力张量有三个主方向,三个主应力。
⾦属塑性成型原理简答题计算题总结1,应⼒张量可分解为哪两部分(请⽤张量表⽰出来)?各包含什么成分?物体在应⼒张量作⽤下发⽣变形,可分成哪两部分?他们⼜分别取决于什么?右边的后⼀项表⽰球应⼒的状态,故称为应⼒球张量,其任何⽅向都是主⽅向,⽽且主应⼒相同,⽽任何切⾯上的剪应⼒均为零,所以球星应⼒张量它只引起物体的体积变化,⽽不能使物体发⽣形状变化右边的后⼀项称为偏应⼒张量,在偏应⼒张量中不再包含有各项等应⼒的成分,因此偏应⼒张量不会引起物体的体积变化,再者,⽚应⼒张量中的剪应⼒成分与整个应⼒张量中的剪应⼒成分完全相同,因⽽应⼒偏张量使物体产⽣形状变化,⽽不能产⽣体积变化,材料的塑性变形就是由应⼒偏张量引起的前者取决于应⼒张量中的球应⼒张量,⽽后者取决于偏应⼒张量:体积变化是弹性的,当偏应⼒张量满⾜⼀定的数量关系时,则物体发⽣塑性变形。
2.什么是热塑性变形?其软化过程有哪些?影响软化过程的主要因素有哪些?从⾦属学⾓度看,在再结晶温度以上进⾏的塑性变形,称为热塑性变形或热塑性加⼯。
圣餐实际中的热塑性加⼯,为了保证再结晶过程的顺利完成以及操作上的需要等,其变形温度远⽐再结晶温度⾼。
热塑性变形时的软化过程⽐较复杂,它与变形温度,应变速率,变形程度以及⾦属本⾝的性质等因素密切相关,按其性质可分为,动态回复,动态再结晶,静态回复,静态再结晶,亚动态再结晶。
动态回复和动态再结晶是在热塑性变形过程中发⽣的;⽽静态回复,静态再结晶和亚动态再结晶则是在热变形的间歇期间或热变形后利⽤⾦属的⾼温余热进⾏的。
静态的和动态的回复或再结晶在机理上并没有本质的差别3.两个屈服准则的最⼤区别在哪⾥?中间主应⼒α2对两个屈服准则的影响最⼤有多⼤?对于屈雷斯加屈服准则,及时中间应⼒α2在α1和α3之间任意变化,也不影响材料的屈服,但在密赛斯屈服准则中,中间应⼒是有影响的。
轴对称应⼒状态是,两个屈服准则是⼀致的;平⾯应变状态时两个屈服准则的差别最⼤,达15.5%;⽽在其余应⼒状态下,两个屈服准则的差别⼩⾬15.5%,视中间的应⼒相对⼤⼩⽽定。
练习题Ⅱ(金属所)1. 用下标符号证明:C B A B C A C B A )()()(⋅-⋅=⨯⨯。
2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈3. 证明ijk klm =(δil δjm -δim δjl )4. 证明ijk ikj =-6。
5. 证明ijkmik =-2δjm 。
6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
7. B 为矢量,M 为二阶张量,证明:(div M )⋅B =div(M ⋅B )-{ (B ∇)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。
⎪⎪⎪⎭⎫ ⎝⎛----=211121112)(ij σ9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。
并验证主方向是相互正交的。
⎪⎪⎪⎭⎫ ⎝⎛=740473037)(ij σ10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1cx 3,u 3= bx 2+cx 3;其中a 、b 、c 皆为常数。
求这个位移场的应变张量Γ。
11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗?⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=32222111216112226226)(x x x x x x x ij ε12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。
练习题Ⅱ解答(金属所)1. 用下标符号证明: C B A B C A C B A )()()(⋅-⋅=⨯⨯。
解:CB A BC A e e e e e C B C B A )()()(()()()(⋅-⋅=-==∈∈=∈=∈⨯=∈⨯⨯i i j j j i j i jl im jm il m l j i klm ijk m l j ik m l klm j ijk i k j ijk c b a c b a )δ-δδδc b a c b a c b a a 2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈解:a ij 的行列式为333231232221131211det a a a a a a a a a A = 当行列式行与行、列与列对换一次行列式的值就变号一次,任意换行后有A a a a a a a a a a lmn n n n m m m l l l det 321321321=∈ 任意换列后有A a a a a a a a a a ijk kjik j i kj i det 333222111=∈ 因此,任意行与行、列与列交换后有A a a a a a a a a a lmn ijk nkmkninj mj mi nimi li det ∈=∈ 令a ij =δij ,det A =1,则有lmn ijk nknj ni mk mj mi lklj li ∈=∈δδδδδδδδδ 3. 证明ijk klm =(δil δjm -δim δjl ) 解:根据上题的结果,有)()3()3()()(im jl mj li li mj mj li mi lj mj li mi lj jl im li kj mk ki mj lk mi lj kk mj li kk mi lk kj mk lj ki mkmj mi lklj li kkkj ki klm ijk δδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδ-=++-++=++-++==∈∈4. 证明ijk ikj =-6解:ijk ikj =-ijk kij =-(δii δjj -δij δji )=-(33-δii )=-(9-3)=-65. 证明ijk mik =-2δjm解:ijk mik =ijk kmi =(δim δji -δii δjm )= (δjm -3δjm )=-2δjm6.证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
塑性加工力学 试 题一、应力分析(总分20分)在 o-xyz 直角坐标系中,已知受力物体内的一点的应力张量(应力单位MPa )为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=505050505ij σ 试求:(1)画出该点的应力单元体;(2)求出该点的应力张量不变量,主应力及主方向、主切应力、最大切应力、应力偏张量、应力球张量和等效应力。
二、应变分析(总分15分)在o-xyz 直角坐标系中,已知受力物体内的一点的应变张量为: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z zy zx yz y yx xz xy x ij εγγγεγγγεε试求:(1)该点的主应变,最大球应变;(2)应变球张量、应变偏张量、八面体应变和等效应变。
三、屈服准则计算 (15分)某理想塑性材料在平面应力状态下的各应力分量为:σy =75MPa ,求σx=15MPa ,σz=0,τxy=15 MPa,若该应力状态足以产生屈服{a )满足Mises 屈服准则;b)满足Tresca 屈服准则;},试问该材料的屈服应力分别是多少?.四、本构方程计算 (总分15分)1)在o-xyz 直角坐标系中,已知受力物体内的一点的应变张量为: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z zy zx yz yyx xz xy x ij εγγγεγγγεε 已知材料的弹性模量为E ,切变模量为G ,泊松比为γ,试求:(1)广义胡克定律的张量形式;(2)等效应力σ和弹性应变强度i ε;五、主应力法计算(20)采用主应力法计算收敛式流动,见右图所示,其中 近似屈服:Y x y 32=-σσ,其中m 为摩擦因子,3/,Y K mK ==τ试推导y σ和p 的计算公式。
六、 滑移线法计算(15)应用滑移线法求光滑冲头压入两边为斜面的半无限高的坯料时的单位流动压力p 和极限压力P 。
设刚性平冲头的宽度为2b ,长度l 远大于宽度,属于平面变形状态,不计冲头与接触面的摩擦,接触面上仅作用均匀分布的法向应力,σy =σ3=-p ,p 为所求的单位流动压力。
1本教材习题和参考答案及部分习题解答第四章4.1已知物体内一点的六个应力分量为: 50x a σ=,0yσ=,30z a σ=-,75yz a τ=-,80zx a τ=,50xy a τ=试求法线方向余弦为112n =,122n =,3n 的微分面上的总应力T 、正应力n σ和剪应力n τ。
解:应力矢量T 的三个分量为11106.57i i T n a σ==,228.033T a =-,318.71T a =-总应力111.8T a 。
正应力26.04n i i T n a σ==。
剪应力108.7n a τ。
4.2过某点有两个面,它们的法向单位矢量分别为n 和m ,在这两个面上的应力矢量分别为1T 和2T ,试证12⋅=⋅T m T n 。
证:利用应力张量的对称性,可得12()()ij i j ji i j n m n m σσ⋅=⋅⋅===⋅⋅=⋅T m n σm m σn T n 。
证毕。
4.3某点的应力张量为01211210x xy xz yx y yz y zx zy z στττστσττσ=⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且已知经过该点的某一平面上的应力矢量为零,求y σ及该平面的单位法向矢量。
解:设要求的单位法向矢量为i n ,则按题意有 0ij j n σ=即2320n n +=,1230y n n n σ++=,1220n n += (a) 上面第二式的两倍减去第一式和第三式,得 2(22)0y n σ-=上式有两个解:20n =或1yσ=。
若20n =,则代入式(a)中的三个式子,可得1n =30n =,这是不可能的。
所以必有1y σ=。
将1y σ=代入式(a),利用1i i n n =,可求得=n4.4基础的悬臂伸出部分具有三角柱体形状,见图4.8,下部受均匀压力作用,斜面自由,试验证应力分量 22(arctg )x y xyA C x x yσ=--++ 22(arctg )yy xyA B x x yσ=-+++0z yz xz σττ===,222xy y A x y τ=-+满足平衡方程,并根据面力边界条件确定常数A 、B 和C 。