第三节勒夏特列原理
- 格式:ppt
- 大小:243.00 KB
- 文档页数:8
教学设计选择性必修1第二章第二节第3课时化学平衡移动原理——勒夏特列原理选修四第二章第三节第3课时化学平衡移动原理——勒夏特列原理“勒夏特列原理”是高中化学选择性必修1第二章第二节的内容,是高中理科班全体学生都要学习的重要理论知识。
该内容是在学生已经学习过化学反应速率及其影响因素、化学平衡状态及其特征的基础上,通过实验探究浓度、温度、压强对化学平衡的影响,分析、理解化学平衡移动的实质,归纳、总结勒夏特列原理,从而建构影响化学平衡的认知模型。
本节课又通过真实案例展示勒夏特列原理在生产、生活中的应用,激发学生学习化学的兴趣,并通过从宏观到微观,从现象到本质的分析,再到规律的广泛应用,培养科学的研究方法和辨证唯物主义观点。
一、教学与评价目标1.教学目标(1)通过实验探究温度、浓度、压强对化学反应平衡的影响的情况,培养学生分析问题和解决问题的能力,并体会控制变量在分析化学平衡影响因素中的重要性。
(2)归纳、总结勒夏特列原理,增强其知识获得感。
(3)通过勒夏特列原理应用的实例分析,解决条件改变时化学平衡移动方向和移动结果的判断问题,增强其对学科价值的认同感。
2.评价目标(1)通过温度、浓度、压强对化学反应平衡影响情况的探究,诊断并发展学生实验探究的水平(基于概念原理水平、定性水平)。
(2)通过归纳、介绍勒夏特列原理,诊断并发展学生的认知思路的结构化水平(系统水平、内涵水平)。
(3)通过勒夏特列原理应用实例的交流讨论和点评,分析、诊断并发展学生解决实际问题的能力水平以及对化学价值的认识水平(学科和社会价值视角)。
二、教学与评价思路Ⅰ宏观现象 化学科学实践 科学探究与创新意识设计、实施实验方案 诊断实验探究水平Ⅲ现实价值 化学科学价值 科学态度与社会责任优化合成氨工业生产条件,发展问题解决能力和化学价值认识水平“勒夏特列原理”教学与评价思路示意图 Ⅱ微观本质 化学科学思维 证据推理与模型认知 宏观辨识与微观探析发展知识关联和认识思路结构化的水平三、教学流程。
勒夏特列原理解释
勒夏特列原理,又称勒夏特列定理,是电磁学中的一个重要定理,它描述了磁场的产生和磁感应强度的规律。
该原理由法国物理学家勒夏特列于1831年提出,是电磁学的基础理论之一。
根据勒夏特列原理,当导体中有电流通过时,它将产生一个磁场。
这个磁场的大小和方向由安培定则给出,即磁场的大小与电流的大小成正比,磁场的方向垂直于电流方向和磁场的平面。
这一规律被称为右手定则,即当右手握住导体,让拇指指向电流方向,其他四指所指的方向即为磁场的方向。
在勒夏特列原理中,还有一个重要的概念是磁感应强度。
磁感应强度是描述磁场强度的物理量,通常用符号B表示。
根据勒夏特列原理,磁感应强度的大小与电流的大小成正比,与导体的形状和位置有关,与磁场的方向有关。
在导体内部,磁感应强度的大小和方向是均匀的,而在导体外部,磁感应强度的大小和方向则会受到导体形状和位置的影响。
勒夏特列原理对于理解电磁现象和设计电磁设备具有重要意义。
例如,在电磁感应现象中,勒夏特列原理可以用来解释感应电流的产生;在电动机和发电机中,勒夏特列原理可以用来设计磁场系统;在变压器中,勒夏特列原理可以用来计算磁感应强度的大小和方向。
总之,勒夏特列原理是电磁学中的基础理论之一,它描述了电流产生磁场的规律,以及磁感应强度的大小和方向。
通过对勒夏特列原理的理解,我们可以更好地理解和应用电磁学知识,为电磁设备的设计和应用提供理论支持。
勒夏特列原理
勒夏特列原理,又称勒夏特列定理,是微积分中的一个重要定理,它是由法国数学家勒夏特列在18世纪提出的。
该原理是指,如
果一个无穷级数的各项逐项趋于零,并且级数的部分和有界,那么
这个级数就是收敛的。
这个原理在数学分析和物理学中有着广泛的
应用,对于理解级数的性质和收敛条件有着重要的意义。
在数学上,级数是指将无穷多个数相加得到的结果。
如果一个
级数的各项趋于零,那么我们可以通过求级数的部分和来判断级数
的收敛性。
勒夏特列原理告诉我们,当级数的各项趋于零时,并且
级数的部分和有界时,这个级数就是收敛的。
这一定理为我们提供
了判断级数收敛性的一种有效方法。
在物理学中,勒夏特列原理也有着重要的应用。
例如在热力学中,我们经常会遇到无穷级数的计算,而勒夏特列原理可以帮助我
们判断这些级数的收敛性,从而得到正确的物理结论。
在工程学中,级数的收敛性也是十分重要的,它关系到许多工程问题的解决。
勒夏特列原理的证明是基于数学分析中的极限理论和数学归纳法。
通过对级数部分和的定义和性质进行分析,可以得到勒夏特列
原理的证明过程。
这一定理的证明过程较为复杂,需要对数学分析
有深入的理解和掌握。
总之,勒夏特列原理是微积分中的重要定理,它为我们判断级
数的收敛性提供了有效的方法。
在数学分析、物理学和工程学中都
有着广泛的应用。
通过深入学习和理解勒夏特列原理,可以更好地
掌握级数的性质和收敛条件,为解决实际问题提供有力的数学工具。
勒夏特列原理
勒夏特列原理是电动势的工作原理之一。
它是指当导体中存在磁感应强度变化时,产生感应电动势的现象。
根据勒夏特列原理,当导体中的磁通量发生变化时,导体中就会产生感应电流。
具体来说,当导体与磁场相对运动或者磁场强度发生变化时,导体中就会产生感应电动势。
这个原理是许多电磁感应实验和电磁感应装置的基础。
在勒夏特列原理中,导体的运动可以是旋转、直线运动或者是磁场的变化。
当导体与磁场相对运动时,导体中的自由电子会受到磁场的作用,产生力使它们朝一个方向移动,从而形成感应电流。
当磁场发生变化时,导体中的自由电子会受到感应磁场的作用,也会产生感应电流。
这样,通过控制导体的运动或者调节磁场的变化,就可以在导体中产生需要的感应电流。
勒夏特列原理在电磁感应领域具有重要的应用。
例如,它被广泛应用于电磁发电机、电磁感应传感器以及电磁感应计量仪表等设备中。
此外,勒夏特列原理也被应用于变压器、感应加热、感应焊接等工业领域。
利用勒夏特列原理,我们可以实现从机械能、热能等其他形式的能量转换成电能,满足不同领域的需求。
总体来说,勒夏特列原理是电磁感应现象的基础之一,通过控制导体的运动或者调节磁场的变化,可以实现电能的转换和利用。
通过进一步的研究和应用,将有助于推动电磁感应技术的发展和创新。
勒夏特列原理
勒夏特列原理(le chatelier's principle),又名化学平衡移动原理,由法国化学家勒夏特列于年发现。
是一个定性预测化学平衡点的原理,其具体内容为:如果改变可逆反应的条件(如浓度、压强、温度等),化学平衡就被破坏,并向减弱这种改变的方向移动。
概述
勒夏特列原理(又称均衡移动原理)就是一个定性预测化学平衡点的原理,主要内容为:在一个已经达至均衡的反应中,如果发生改变影响均衡的条件之一(例如温度、应力以及出席反应的化学物质的浓度),均衡将向着能弱化这种发生改变的方向移动。
比如一个可逆反应中,当增加反应物的浓度时,平衡要向正反应方向移动,平衡的移动使得增加的反应物浓度又会逐步减少;但这种减弱不可能消除增加反应物浓度对这种反应物本身的影响,与旧的平衡体系中这种反应物的浓度相比而言,还是增加了。
勒夏特列原理的应用领域可以并使某些工业生产过程的转化率达至或吻合理论值,同时也可以防止一些并并无成效的方案(例如高炉提碳的方案),其应用领域非常广为。
勒夏特列原理:定义:如果改变影响平衡的一个条件(如浓度、压强、温度),平衡将向着能够减弱这种改变的方向移动。
勒夏特列原理又叫平衡移动原理。
注意事项:(1)平衡向“减弱”外界条件变化的方向移动,但不能“抵消”外界条件的变化。
(2)增大并不意味着平衡一定向正反应方向移动,只有V正>V逆时才可以肯定平衡向正反应方向移动。
(3)当平衡向正反应方向移动时,反应物的转化率并不一定提高,生成物的体积分数也并不一定增大(因为反应物或反应混合物的总量增大了),增大一种反应物的浓度会提高另一种反应物的转化率。
(4)存在平衡且平衡发生移动时才能应用平衡移动原理。
习题:1.下列事实,不能用勒夏特列原理解释的是A.硫酸工业中,增大O2的浓度有利于提高SO2的转化率B.对2HIH2+I2平衡体系增加压强使颜色变深C.开启啤酒瓶后,瓶中立刻泛起大量泡沫D.滴有酚酞的氨水溶液,适当加热溶液(氨气不挥发)后颜色变深2.下列不能用勒夏特列原理解释的是()A.Fe(SCN)3溶液中加入固体KSCN后颜色变深B.棕红色NO2加压后颜色先变深后变浅C.SO2催化氧化成SO3的反应,往往需要使用催化剂E.合成氨工业中通入过量氮气可提高H2转化率3.下列事实不能用勒沙特列原理解释的是()①氯化铁溶液加热蒸干最终得不到氯化铁固体②铁在潮湿的空气中容易生锈③实验室可用排饱和食盐水的方法收集氯气④常温下,将1mL pH=3的醋酸溶液加水稀释至l00mL,测得其pH<5⑤钠与氯化钾共融制备钾Na(l)+KCl(l)=熔融K(g)+NaCl(l)4.下列事实中能应用勒沙特列原理来解释的是A.往硫化氢水溶液中加碱有利于S2-的增加B.加入催化剂有利于氨氧化的反应C.高压不利于合成氨的反应D.500℃左右比室温更有利于合成氨的反应1.解析:A、硫酸工业中,增大O2的浓度平衡向生成三氧化硫的反应进行,因此有利于提高SO2的转化率,适用于勒夏特列原理;B、对2HIH2+I2平衡体系增加压强,反应速率加快,但反应前后体积不变,因此平衡不移动。
勒夏特列原理内容及要点勒夏特列原理由法国物理学家勒夏特列于1831年提出。
他的实验是将一根导体线圈放置在一个交变磁场中,通过观察导线两端的电压变化来研究磁场对导体的影响。
他的实验结果表明,当磁场的磁通量发生变化时,导体的两端会产生一个电动势,导体的电压也会随之变化。
这个观察结果被总结为勒夏特列原理。
E = -N(dΦ/dt)其中E是电动势,N是导体线圈的匝数,Φ是磁场穿过导体线圈的磁通量,而dΦ/dt表示磁通量的变化速率。
由此可见,当磁场的变化速率越大,通过导体的电动势也越大。
1.电磁感应:勒夏特列原理是电磁感应学的基础,也是电磁感应现象的定量描述。
2.导体与磁场相互作用:勒夏特列原理要求导体与磁感线相对运动,才会在导体中产生电动势。
3.磁通量的变化:当磁场的磁通量发生变化时,导体中就会产生电动势。
这个电动势的大小与磁通量的变化速率成正比。
4.电磁感应定律:勒夏特列原理可以看作是法拉第电磁感应定律的一个特例。
法拉第电磁感应定律是在勒夏特列原理的基础上进一步发展起来的。
5.电磁感应中的负号:勒夏特列原理中的负号表示了电磁感应的方向规律,即电动势的方向与磁通量变化方向相反。
此外,勒夏特列原理也为电磁感应现象的研究提供了重要的理论基础。
通过研究原理,我们能够更好地理解与应用电磁感应现象,从而推动科学技术的发展。
综上所述,勒夏特列原理是电磁感应学的基础之一,它揭示了磁场对导体的作用方式,并通过数学方式定量描述了电动势与磁通量变化之间的关系。
勒夏特列原理在实际应用中有着丰富的应用,并为电磁感应现象的研究提供了理论基础。
勒夏特列原理是什么
勒夏特列原理是一种用于描述理想气体状态的基本原理。
该原理由两个方面组成:1)理想气体的状态可以由其压强、体积
和温度来完全描述,即压强-体积-温度关系,也被称为理想气
体状态方程;2)在恒定温度下,理想气体的体积与压强成反
比的关系,即压强与体积的乘积呈常数。
根据勒夏特列原理,当温度保持不变时,对于一定质量的理想气体,其压强和体积成反比关系,即当压强增加时,体积减小;当压强减小时,体积增大。
同时,当压强和体积保持不变时,对于一定质量的理想气体,其温度与体积成正比关系,即当温度增加时,体积增大;当温度减小时,体积减小。
勒夏特列原理是描述理想气体行为的一个重要基础,也可以用于解释理想气体的多种性质和现象。
在实际应用中,勒夏特列原理经常被用来计算气体的性质和变化,例如计算压力、体积和温度的关系,推导理想气体状态方程等。