第7讲 数阵图
- 格式:doc
- 大小:303.50 KB
- 文档页数:6
三年级尖子班第七讲数阵图【例1】(难度★)∼分别填入下图的○中,①将19使得横、竖五个数相加的和都等于25。
②(难度★★)请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】①(1)这9个自然数+++++之和:123456+++=;78945(2)这个图形共有2条边,2×=;条边总和为25250(3)而中间数被重复计算了1−=;次,所以,中间数=50455(4)剩下8个数之和为40,所以每边剩下2数之和为÷=;40220=+++=(5)凑数,209731+++,那么可得填法如右8642上图(答案不唯一)②1~7这七个自然数的和为:123456728++++++=; 而中心数被重复计算了两次,假设中心数为a ,三条直线上的三个数总和为S ,则2823a S +=,即282a +能被3整除,所以,中心数a 的可能取值为:1、4、7;(1)当a 的取值为1时,除中心数外其它两数和为9273645=+=+=+(2)当a 的取值为4时,除中心数外其它两数和为8172635=+=+=+(3)当a的取值为7时,除中心数外其它两数和为=+=+=+7162534答案如图所示。
【例2】(难度★★)将1~6这六个自然数分别填入下图的六个○中使得三角形每条边上的三个数之和都相等【分析】(1)这6个自然数之和:12345621+++++=;(2)假设每条边上的数字和为S,重复数为a 、b 、c ,则213a b c S +++=,而3S 是3的倍数,所以21a b c +++也是3的倍数, 所以,a b c ++可能的取值为:6、9、12、15;⑶凑数,当6123a b c ++==++时,答案如图所示; 当9135a b c ++==++时,答案如图所示;当12246a b c ++==++时,答案如图所示;当15456a b c ++==++时,答 案如图所示。
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
数阵图
1、把1~7这七个数字填在下图中,使得横行、竖列之和都等于15。
如果和是16、17又怎样填呢?请你试一试:
2、把1、2、
3、
4、
5、6六个数分别填入圆圈内,使横行三个数的和与竖行四个数的和分别等于11。
3、在一个魔术三角形里,把10到15这六个数分别填入圆圈中,要求三角形每条边上的三个数之和S都相等,那么S最小是多少?
4、将1、2、3、4、
5、6六个数字填入图中的小圆圈内,使每个大圆上四个数字的和都是15。
5、请你把1、2、3、4、5、
6、
7、8八个数分别填入图中,使每个五边形上的五个数的和是21。
6、把1~7这七个数填在下图中,使得每条线上三个数的和都相等,且最大。
7、将1~4四个数填在下图的四个空格中,使横行三个数的和与纵列两个数的和相等。
8、将1~7这七个数填入图中,使得每条线上三个数的和相等。
`
参考答案:
1题:(1)6、2、7与1、3、2、4、
5。
(2)中间填4,
(3)中间填6.
2题:4、1、6与1、2、3、5.
3题:从某一顶点起10、15、11、
13、12、14。
4题:中间数3、6.两边为1、5与2、
4.
5题(1)中间1、5.两边6、2、7与
3、4、8。
(2)中间2、4两边3、
5、7与1、
6、8
6题:中间数7.
7题:中间数2或4.
8题:中间数1、4、7。
数阵图
一、数阵图定义及分类:
定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.
数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.
二、解题方法:
解决数阵类问题可以采取从局部到整体再到局部的方法入手:
第一步:区分数阵图中的普通点(或方格)和关键点(或方格);
第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;
第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.
简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数。
数阵图一、把1~6这六个数,分别填在下图,使每条线上三个数的和都等于①9 ②10 ③11 ④12,应如何填二、把1~12这十二个数,分别填在下图的圆圈里,使每条线上四个数的和分别等于22和30三、把四、把22五、把1~9这九个数分别填在下图中的九个圆圈里,使内,外两个三角上六个数的和都等于26六、将1~11七、把1~7这七个数分别填在下图的圆圈里,使每条线上三个数的和与每个圆上三个数的和都等于12。
八、在图中空格内填上适当的数,使每行、每列,每条对角线上的数和为27。
(必须写出2种)九、将5~1455。
十、1.把3,4,5,6,7都是14。
十一、下面是一个九宫图,第一行第三列上的数是6,第二行第一列上的数是7,请你在其他位置填上适当的数,使每行、每列以及每条对角线上的三个数和为30十二、将1~25填在5×5的方格内,制成五阶幻方。
十三、将1~16填在4×46.将1~67.把1~8这89.将1,2,3,4,5,6,7,8,9这九个数,分别填入下图的九个方格中,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍。
10.将1~10这十个自然数分别填入图中的十个圆内,使各条线段上四个圈内数的和相等,每11.把1~8这八个数填入下图正方体的八个顶点的圆圈里,使每个面上的四个圆圈里的四个数之和都相等。
补充:幻方构造方法幻方,亦称纵横图。
台湾称为魔术方阵。
将自然数1,2,3,……n*n排列成一个n*n方阵,使得每行、每列以及两对角线上的各个数之和都相等,等于n/2*(n*n+1),这样的方阵称为幻方。
例如:把1,2,3,4,5,6,7,8,9填入3*3的格子,使得:每行、每列、两条对角线的和是15。
n是它的阶数,比如上面的幻方是3阶。
n/2*(n*n+1)为幻方的变幻常数。
数学上已经证明,对于n>2,n阶幻方都存在。
目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()例题精讲知识点拨教学目标5-1-3-2.数阵图由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3)(1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】17 89411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k (A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
顿悟教育三年级数学培优训练第七讲数阵图在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
【知识要点】
数阵图就是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
常见的数阵图有以下三种:
1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图。
填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解。
2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为“封闭型数阵图”。
填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图。
3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”。
我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和
与关键数字。
数阵图的解题关键是找”重复数”。
将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。
【例2】
把1~7这七个数分别填入下图的○内,使每条线段上三个○内数的和相等。
【例3】
将2~9这八个数分别填入下图的○里,使每条边上的三个数之和都等于18。
【例4】
唐僧师徒西天取经路过数字山,山中住着一个数学大王告诉他们,只有他们能1,2,3,4,5,6 六个数字填入下图中的小圆圈内,使每个大圆上四个数字的和都是l6才允许他们通过,这可急坏了师徒四人,你能解决这个问题吗?
【例5】
【超常】将1~8填入下图的八个○中,使得每条直线上的四个数之和与每个圆周上的四个数之和都相等。
【例5】
【超常2】将自然数1~7填入右图的七个○中,使得横、竖、斜的每条直线上的三个数之和都相等。
【例5】
【超常】如图 “好、朋、友、伙、伴、帮、手”这7个汉字分别代表1~7这7个数字。
已知3条直线上的3个数相加,2个圆周上的3个数相加,所得的5个和相同。
那么,“好”字代表多少?
手
帮伴
伙
友
朋
好
【例6】
【超常】(希望杯培训题)小老鼠打洞,撞到一面墙上有一个奇怪的问题挡住了它的去路,问题是这样的:请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15,快点帮帮小老鼠吧。
5
7 3
【例6】
【超2】将1~8填入下图的八个○中,使得每条边上的三个数之和都等于15。
【例6】
【超1】将2~9这八个数分别填入下图的○里,使每条边上的三个数之和都等于18。
9
874
9
86
5。