实际问题与一元二次方程传播问题
- 格式:doc
- 大小:29.00 KB
- 文档页数:1
教学反思一、关于方程模型的处理在“实际问题与一元二次方程”这一课的教学过程中,“实际问题”与“方程”的转化,是贯穿始终的一条主线.主要反映在以下二个方面.第一,实际问题一直都是学生的难点,学生主要的困难就是在较复杂的实际问题中抽象出数学模型,找到等量关系来列出方程,本节课教师设置了多个问题,由易到难,引导学生的思维层层递进,很自然地列出式子表示每一轮的患病人数,从而列出方程,突破了本节课的难点.第二,本节课紧扣“模型思想”安排大量的探究学习,改变了以前“老师讲,学生听”的模式,让学生真正经历问题的解决过程,逐步学会自己解决问题,这样才能真正培养学生的“模型思想”.于是,在教学中,关注了对“等量关系”的分析.二、关于教学效果的反思在实际授课过程中,教学环节的展开是自然、顺畅的,如“观察探究,形成新知”环节,学生能够在教师的引导下,说出用一元一次方程解决实际问题的步骤和方法,并通过类比一元一次方程应用的研究方法,完成审、设、列、解、答的过程,也可以通过分析传播问题中的等量关系,列出一元二次方程模型和检验得到符合要求的解.然而,由于学生刚刚接触一元二次方程模型,一元二次方程根的个数(2个)与一元一次方程根的个数(1个)之间存在差异,学生还缺乏对一元二次方程“整体形象”的把握.一方面,在解方程中不能选用恰当方法求解,学生还不能有意识地从“实际问题,实际背景”来考虑问题,传播问题的三种类型题中,传染源的参与情况分析不好,这致使学生在课后“目标检测”时,对部分问题的解决出现偏差.此外,展开本节课学习的一个重要的方法,就是“类比”.在教学过程中,教师极力引导学生要“类比一元一次方程学习的方法”,最大限度地调动学生“合情推理”的因素,以确保学习知识的“正迁移”效应.事实上,这样也会带来另一些负面的影响,学生往往对属于一元一次方程和一元二次方程“共性”的结论印象比较深刻,而对于新的一元二次方程“个性”的结论,在理解上反而会受到一些干扰.三、关于教学设计的改进基于上述思考,我认为在教学设计中,还存在需要改进的地方.应关注“类比”中的“差异性”实际问题与一元二次方程的学习,可以类比一元一次方程的研究方法进行,从而体现了方程学习的一般规律和方法.本教学设计尊重人教版课标教材的编写意图,其中所呈现的通过“实际问题”背景,到“一元二次方程”,到利用一元二次方程模型“解决实际问题”,这一探究的过程和方法,是学习方程时不可或缺的.无疑,“类比”是一种重要的方法,对于学生理解一元二次方程应用、建立完善的认知结构具有重要的意义.但是,我们在运用“类比”的方法研究一元二次方程应用的过程中,还应注意“趋同求异”,关注一元二次方程与一元一次方程之间的“差异性”,如方程的根“2个”与“1个”、“一轮后”与“两轮后”等,这样的认识,在本课教学时,应加以强调,并传达给学生.。
《实际问题与一元二次方程》第一课时教学设计一、教学内容分析本课的主要内容是以列一元二次方程解应用题为中心,深入探究传播问题中的数量关系。
活动的侧重点是列方程解应用题,提高学生应用方程分析解决问题的能力。
活动中涉及了一元二次方程解法,列方程解应用题的一般规律等。
这些问题在现实世界中有许多原型,让学生理解三类传播问题可以用一元二次方程作为数学模型,使问题得到解决。
二、学情分析1、学生已经学习了用一元一次方程、二元一次方程(组)解决实际问题,本节讨论如何利用一元二次方程分析解决实际问题。
2、本节课是在学生学习了一元二次方程的解法后学习用一元二次方程解决实际问题的第一课时,因此学生对应用恰当的方法解一元二次方程还存在一定的问题,教学过程中要继续加强练习。
3、学生对列方程解应用题的一般步骤已经很熟悉,适合自主探究、合作交流的数学学习方式。
4、此时的学生具有丰富的想象力、好奇心和好胜心理,本节从生活中的实际问题入手,容易开发他们的主观能动性,适合由特殊到一般的探究方式。
三、教学目标知识与技能: 1、会根据具体问题:传染病、病毒传播问题、支干问题、细胞分裂问题中的数量关系列一元二次方程并求解.体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
过程与方法:经历由实际问题转化为一元二次方程的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述,培养学生将实际问题转化为数学问题的能力。
情感、态度与价值观: 1、使学生体会到数学来源于生活,服务于生活的数学思想。
2、使学生通过解决实际问题的过程感知探究学习的乐趣。
四、教学重点、难点重点:使学生学会用列一元二次方程的方法解决传播问题。
难点:提高学生转化实际问题为数学问题的能力以及分析问题、解决问题的能力。
五、教学策略在本课的学习中,应重视相关内容与实际的联系,加强对一元二次方程是解决现实问题的一种数学模型的认识。
人教版数学九年级上21.3第一课时教学设计探究1 有一人患了流感,经过两轮传染后共有121人患了流 感,每轮传染中平均一个人传染了几个人?思考:1.本题中有哪些数量关系?2.如何理解“两轮传染”?3.如何利用已知的数量关系选取未知数并列出方程? 设每轮传染中平均一个人传染x 个人,那么患流感的这个人在第一轮传染中传染了______人;第一轮传染后,共有______ 人患了流感;在第二轮传染中,传染源是____人,这些人中每一个人又传染了______人,那么第二轮传染了______人,第二轮传染后,共有______人患流感.4.根据等量关系列方程并求解解:设每轮传染中平均一个人传染了x 个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:1+x+x(1+x)=121 解方程得x1=10, x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人. 5.为什么要舍去一解?6.如果按照这样的传播速度,三轮传染后,有多少人患流题的突破口,从而学会运用列一元二次方程解决实际问题。
根据实际举一反三,引导数学知识解决传染病问题,为运用一元二次方程解决实际问题做铺垫。
让学生通过探究问题,体会运用一元二次方程解决实际问题过程,体会数学思想。
感?注意:1.此类问题是传播问题.2.计算结果要符合问题的实际意义. 学生自主解决问题,老师总结解决传播问题的注意事项。
三、重难点精讲例题:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?解:设每轮感染中平均一台电脑会感染 x 台电脑,则1+x+x(1+x)=100,即(1+x)2=100.解得 x1=9,x2=-11(舍去) .∴ x=9.归纳:解决此类问题的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.传播问题:学生独立完成,再合作交流,教师最后巡视指导,并总结解题注意事项。
实际问题与一元二次方程一、引入:同学们我们平时可能会经常遇到或听说传染病,你知道传染病是如何传播的吗?我们今天就来专题学习一下。
二、教学流程:在教学实际问题与一元二次方程中的“传染病”问题时,为了控究“传染病”问题的规律,我出示了这样一道题目:例:流感具有传染性,有一个人患流感,在每轮传染中平均一个人能传给5个人,那么经过两轮传染后共有多少人患流感?教师:“你会计算吗?”学生都争先恐后的回答。
学生甲:一轮后:(1+5)=6人二轮后:6+5×6=36人你能说说依据吗?学生说“原来的一个是传染源,经过一轮后一个人就传给了5个人,所以一轮后就有6个人患了流感,在第二轮时,第一轮被传染的6个人,都变成了传染源,所以第二轮就有6+5×6=36人。
教师:“你真聪明!”如果经过三轮传染呢?学生乙:三轮后:36+5×36=216人。
教师:你发现其中的规律吗?学生表示困难。
教师:我们将等式变形:一轮后:(1+5)人。
二轮后:(1+5)+5(1+5)三轮后:(1+5)2+5(1+5)学生丙:我发现了规律,第几轮就是(1+5)的几次方。
教师:你太棒了!大家给他鼓掌!你能总结一个计算公式吗?学生丁:(1+x)n( x代表每轮传染的人数,n 代表传染的轮数)然后,我出示了例题:流感具有传染性,有一个人患流感,经过两轮传染后共有121人患流感,平均每轮传染中一个人传给了几个人?学生类比前面的问题很快列出方程:解:设每轮传染中平均一个人传给了x个人(1+x)n=121学生集体完成了这道题的解答过程。
然后,我又出示了同种类型题,进行强化,本节课教学效果很好。
我本节课,我改变了教材中例题的呈现方式,遵循了由“特殊到一般”的数学思想,由浅入深,层层递进,符合学生的认知规律,真正达到了深入浅出的目的,事实证明,这种对课程的处理方式很成功,达到了预期的教学效果。
2.3.1 实际问题与一元二次方程(1)(探究案)
1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人(
分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
解:
【合作探究】
问题1、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌
【题型练习】2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支
问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛
【题型练习】
1、参加一次足球联赛的每两个队之间都进行两次比赛(双循环比赛),共要比赛90场,共有多少个队参加比赛
2、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共
3、某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人
【轻松检测】
1、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,生物兴趣小组共有多少人
2、我们知道传销能扰乱一个地方的正常的经济秩序,是国家法律明令禁止的,如图是某传销公司的发展模式,该传销模式经两轮发展后,共有传销人员111名,问该传销公司要求每人发展多少名下家
3、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台》
4、参加一次商品交易会的每两家公司之间都签订一份合同,所有的公司共签订了45份合同,共有多少家公司参加商品交易会
头目
下家下家
下家下家下家下家。