酶化学修饰
- 格式:ppt
- 大小:2.37 MB
- 文档页数:40
第三章酶的化学修饰第一节酶的分子修饰一、酶的化学修饰原因1、稳定性2、酶反应的最适条件3、酶的专一性4、米式常数过大5、临床应用的特殊要求6、酶种类的限制改变酶特性有两种主要的方法:1)通过分子修饰的方法来改变已分离出来的天然酶的活性。
2)通过基因工程方法改变编码酶分子的基因而达到改造酶的目的。
二、酶分子修饰通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
即在体外将酶分子通过人工的方法与一些化学基团(物质),特别是具有生物相容性的物质,进行共价连接,从而改变酶的结构和性质。
三、酶分子修饰的意义⏹提高酶的活力⏹增强酶的稳定性⏹降低或消除酶的抗原性⏹研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响化学修饰效果举例用纤维蛋白的专一性单克隆抗体修饰尿激酶,使其溶血栓性提高了100倍。
用乙醛酸修饰胰凝乳蛋白酶的表面氨基,形成亲水性的α-NHCH2COOH后,该酶对60℃热处理的稳定性增高了1000倍。
超氧化物歧化酶(SOD)、L-谷氨酰胺酶、L-天门冬酰胺酶、尿酸酶等用PEG(聚乙二醇)修饰后,完全消除了酶的抗原性和免疫原性,减慢了它们在动物血液循环中被清除的速度,酶的活力可以保存15%-45%。
四、酶化学修饰的基本原理1、如何增强酶天然构象的稳定性与耐热性修饰剂分子存在多个反应基团,可与酶形成多点交联。
使酶的天然构象产生“刚性”结构。
2、如何保护酶活性部位与抗抑制剂大分子修饰剂与酶结合后,产生的空间障碍或静电斥力阻挡抑制剂,“遮盖”了酶的活性部位。
3、如何维持酶功能结构的完整性与抗蛋白水解酶酶化学修饰后通过两种途径抗蛋白水解酶:A 大分子修饰剂产生空间障碍阻挡蛋白水解酶接近酶分子。
“遮盖”酶分子上敏感键免遭破坏。
B 酶分子上许多敏感基团交联上修饰剂后,减少了受蛋白水解酶破坏的可能性。
4、如何消除酶的抗原性酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成了共价键。
第五章酶分子的化学修饰主要内容:●酶的活性中心●酶化学修饰的目的●酶化学修饰的原理●酶化学修饰的设计●酶化学修饰的应用第一节酶的活性中心(active site)一、活性中心的概念P12酶的必需基团(essential group): 与酶活性有关的基团酶的活性中心(active center): 由必需基团构成的与酶催化活性有关的特定区域.酶的必需集团在一级结构上并不互相毗邻,往往分散在氨基酸系列中,甚至分布在不同肽链上。
当肽链盘曲、折叠形成空间结构时,互相隔离的必需基团彼此靠近,集中在酶分子表面而形成具有三维结构的特定区域。
该区域能与底物结合并发挥催化作用,故称酶的活性中心(active center)活性部位(active site)。
对于结合酶来说,辅酶或辅基参与酶活性中心的组成。
活性中心的重要化学基团——7种氨基酸出现的频率最高:Lys、Asp、Glu、Cys、His、Tyr和Ser(兰天果拌猪肉丝)。
某些功能基团(氨基、羧基、巯基、羟基和咪唑基)是酶的必需基团。
图释左图:丝氨酸的羟基、半胱氨酸的巯基、组氨酸的咪唑基右图:天冬氨酸和谷氨酸的羧基、赖氨酸的氨基、酪氨酸和丝氨酸的羟基。
二、活性中心的共性P12(1)活性部位只占酶分子很小的一部分(1-2%)。
(2)活性部位是一个三维实体(entity)(3)活性中心位于酶分子表面的疏水性裂缝中。
(4)活性中心构象不是固定不变的(诱导契合)(5)酶与底物通过盐键、氢键、范德华力和疏水作用等次级键结合。
1.The active site takes up a relatively small part of the total volume of an enzyme.左图:肌球蛋白模型。
只显示出α-碳原子,红的为血红素,绿的是两种关键的组氨酸残基。
右图:来自胞质热激蛋白的ATP酶片段的结构图。
ADP(红的)位于两个结构域(黄和蓝的)之间的裂缝中。
酶的化学修饰方法通过对酶蛋白分子的主链进行“切割”、“剪切”以及在侧链上进行化学修饰来达到改造酶分子的目的。
这种应用化学方法对酶分子施行种种“手术”的技术称为酶化学修饰。
PEG化修饰聚乙二醇或甲基聚乙二醇有一系列不同分子量分布的产品(常用的分子量分布在5000 ~ 10000之间) , 无毒副作用, 无免疫原性, 具有良好的生物相容性。
1977 年 Abuchowski等[1]率先用 PEG修饰牛血蛋白BSA, 发现 PEG化的BSA保持了蛋白质的原有活性, 在体内的半衰期大大延长, 且无免疫原性。
其后人们利用PEG化技术先后对大量的蛋白和酶制剂进行了修饰。
PEG必须经活化才能用于脂肪酶的化学修饰。
活化的方法如图1所示.图1聚乙二醇(polyethylene glycol, PEG)是一种pH中性, 无毒, 水溶性较高的亲水聚合物,其重复单元为氧乙烯基, 端基为两个羟基, 呈线性或支化链状结构[2]. PEG聚合物是迄今为止已知聚合物中蛋白和细胞吸收水平最低的聚合物[3]。
姚文兵等[4] 用三光气和羟基琥珀酰亚胺对mPEG5000进行活化, 再对人干扰素α-2b进行了修饰研究, 反应方程式如Eq. 1所示.Goodson等[5]通过重组技术把Cys残基引入白介素(rIL-2)的非活性单糖基化位点, 采用马来酰亚胺活化的PEG (PEG-maleimide)对其进行修饰, 反应方程式如Eq. 2所示.[1]Abuchowski A, Van Es T, Palczuk C N, e t al . Ef f e ct of covalent at tach mentof polyethylene glycol on immun ogenicity and circulating life of bovine liver catalase [ J ] . J . Biol .Chem. , 1977 , 252: 3578- 3581.[2]Bailon, P.; Berthold, W.Pharm. Sci.Technol. Today 1998, 1, 352.[3]Hooftman, G.; Herman, S.; Schacht, E. J. Bioact. Compat. Polym. 1996, 11, 135.[4]Yao, W. B.; Lin, B. R.; Shen, Z. L.; Wu, W. T. Chin. J. Biochem. Pharm. 2001, 22, 289 (in Chinese).(姚文兵, 林碧蓉, 沈子龙, 吴梧桐, 中国生化药物杂志, 2001, 22, 289.)[5]Goodson, R. J.; Katre, N. V. Bio/technology 1990, 8, 343.。
名词解释酶的化学修饰酶的化学修饰是指酶在细胞内经过一系列化学反应,导致其分子结构发生变化,从而改变其生物学活性的过程。
这种修饰过程可以发生在酶的分子内部或表面,并且可以引起酶的活性增加、降低或改变。
以下是对酶的化学修饰的几种主要类型的解释:1.磷酸化磷酸化是一种常见的酶修饰方式,是通过将磷酸基团添加到酶的分子上而实现的。
磷酸化可以影响酶的活性、调节酶的底物特异性、改变酶的分子大小和电荷分布等。
例如,在糖原磷酸化酶的修饰中,磷酸化可以使其活性增加,促进糖原分解为葡萄糖的过程。
2.乙酰化乙酰化修饰是在酶的分子上添加乙酰基团的过程。
这种修饰通常影响酶的活性中心,改变酶对底物的亲和力和催化效率。
例如,在乙酰化转移酶的修饰中,乙酰化可以增加酶对乙酰基团的转移能力,从而促进脂肪酸的合成。
3.甲基化甲基化修饰是在酶的分子上添加甲基基团的过程。
甲基化可以影响酶的活性、调节酶的底物特异性和稳定性。
例如,在组蛋白甲基转移酶的修饰中,甲基化可以影响染色体的结构和基因表达水平。
4.糖基化糖基化是在酶的分子上添加糖链的过程。
糖基化可以改变酶的分子大小、调节酶的溶解性和稳定性、保护酶免受细胞外酶的降解等。
例如,在免疫球蛋白糖基转移酶的修饰中,糖基化可以调节抗体的抗原特异性,影响免疫应答的效果。
5.硫化硫化修饰是在酶的分子上添加硫原子或硫基团的过程。
硫化修饰通常发生在某些金属蛋白酶中,可以影响酶的活性中心和底物特异性。
例如,在胱氨酸蛋白酶的修饰中,硫化可以使其对底物的催化效率提高数百倍。
6.肽化肽化修饰是通过将肽键添加到酶的分子上而实现的。
肽化可以改变酶的分子大小、调节酶的底物特异性和溶解性等。
例如,在胰岛素原的修饰中,肽化可以使其转化为有活性的胰岛素,从而调节血糖水平。
7.氧化还原氧化还原修饰是通过改变酶分子上的氧化态或还原态的硫基团、氮基团或碳基团来实现的。
这种修饰可以影响酶的活性、调节底物特异性、改变酶对氧化剂或还原剂的敏感性。