选修2-1双曲线及其标准方程课时作业
- 格式:doc
- 大小:62.00 KB
- 文档页数:7
§2.3 双曲线2.3.1 双曲线及其标准方程一、选择题1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫62,0C.⎝⎛⎭⎫52,0D .(3,0) 考点 双曲线的标准方程题点 由双曲线方程求参数[答案] B[解析] 将双曲线方程化为标准方程为x 2-y 212=1, ∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0. 2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为25,则该双曲线的方程为( )A.x 24-y 2=1B.x 23-y 22=1C .x 2-y 24=1 D.x 22-y 23=1 考点 双曲线的标准方程的求法题点 待定系数法求双曲线的标准方程[答案] C[解析] 由题意得⎩⎪⎨⎪⎧ |PF 1|-|PF 2|=2a =b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=1,b 2=4, 则该双曲线的方程为x 2-y 24=1. 3.已知双曲线x 2a -3+y 22-a=1,焦点在y 轴上,若焦距为4,则a 等于( ) A.32B .5C .7D.12考点 双曲线的标准方程题点 由双曲线方程求参数[答案] D[解析] 根据题意可知,双曲线的标准方程为y 22-a -x 23-a=1. 由其焦距为4,得c =2,则有c 2=2-a +3-a =4,解得a =12. 4.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( )A .3或7B .6或14C .3D .7考点 双曲线的定义题点 双曲线定义的应用[答案] A[解析] 连接ON ,ON 是△PF 1F 2的中位线,∴|ON |=12|PF 2|,∵||PF 1|-|PF 2||=4,|PF 1|=10,∴|PF 2|=14或6,∴|ON |=12|PF 2|=7或3. 5.“mn <0”是方程“mx 2+ny 2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点 双曲线的标准方程题点 已知曲线方程判断曲线的形状[答案] C[解析] 因为mn <0,所以m ,n 均不为0且异号,方程mx 2+ny 2=1,可化为x 21m +y 21n=1,因为1m 与1n 异号,所以方程x 21m +y 21n=1表示双曲线,故“mn <0”是“方程mx 2+ny 2=1表示双曲线”的充分条件;反之,若mx 2+ny 2=1表示双曲线,则其方程可化为x 21m +y 21n=1,可知1m 与1n异号,则必有mn <0,故“mn <0”是“方程mx 2+ny 2=1表示双曲线”的必要条件.综上可得,“mn <0”是方程“mx 2+ny 2=1表示双曲线”的充要条件.6.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( ) A.x 216-y 29=1 B.x 216-y 29=1(x ≥4) C.x 29-y 216=1 D.x 29-y 216=1(x ≥3) 考点 求与双曲线有关的轨迹方程题点 双曲线的一支[答案] D[解析] 由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16.故其轨迹为以A ,B 为焦点的双曲线的右支.所以方程为x 29-y 216=1(x ≥3). 7.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线的一支B .圆C .椭圆D .双曲线 考点 双曲线的定义题点 双曲线定义的应用[答案] A[解析] 设动圆的圆心为M ,半径为r ,圆x 2+y 2=1与x 2+y 2-8x +12=0的圆心分别为O 1和O 2,半径分别为1和2,由两圆外切的充要条件,得|MO 1|=r +1,|MO 2|=r +2.∴|MO 2|-|MO 1|=1,又|O 1O 2|=4,∴动点M 的轨迹是双曲线的一支(靠近O 1).8.若双曲线x 2n-y 2=1(n >1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .1B.12C .2D .4 考点 双曲线的定义题点 双曲线的焦点三角形[答案] A[解析] 设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2n ,已知|PF 1|+|PF 2|=2n +2, 解得|PF 1|=n +2+n ,|PF 2|=n +2-n , |PF 1|·|PF 2|=2.又|F 1F 2|=2n +1,则|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2为直角三角形,∠F 1PF 2=90°,∴12PF F S △=12|PF 1|·|PF 2|=12×2=1.二、填空题9.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是________.考点 双曲线的标准方程的求法题点 待定系数法求双曲线的标准方程[答案] y 2-x 23=1 [解析] 由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1. 10.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________. 考点 双曲线的标准方程题点 由双曲线方程求参数[答案] (2,+∞)[解析] 由曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,可得x 21m -y 21m -2=1, 即有m >0,且m -2>0,解得m >2.11.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________.考点 双曲线的标准方程的求法题点 待定系数法求双曲线的标准方程[答案] x 216-y 29=1 [解析] 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得1QF k ·2QF k =-1, ∴5c ·5-c=-1,∴c =5, 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), ∵双曲线过点(42,-3),∴32a 2-9b 2=1, 又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9,∴双曲线的标准方程为x 216-y 29=1. 三、解答题12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程. 解 已知双曲线x 216-y 29=1, 则c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 依题意知b 2=25-a 2,故所求双曲线方程可写为x 2a 2-y 225-a 2=1. ∵点P ⎝⎛⎭⎫-52,-6在所求双曲线上, ∴⎝⎛⎭⎫-522a 2-(-6)225-a 2=1,化简得4a 4-129a 2+125=0,解得a 2=1或a 2=1254. 当a 2=1254时,b 2=25-a 2=25-1254=-254<0, 不合题意,舍去,∴a 2=1,b 2=24,∴所求双曲线的标准方程为x 2-y 224=1. 13.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程. 考点 双曲线的标准方程的求法题点 待定系数法求双曲线的标准方程解 (1)如图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0,则MF 1⊥MF 2,设|MF 1|=m ,|MF 2|=n ,由双曲线定义,知m -n =2a =8,①又m 2+n 2=(2c )2=80,②由①②得m ·n =8,∴12mn =4=12|F 1F 2|·h ,∴h =255.(2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16),由于双曲线C 过点(32,2),∴1816-λ-44+λ=1,解得λ=4或λ=-14(舍去),∴所求双曲线C 的方程为x 212-y 28=1.14.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32考点 双曲线的定义题点 双曲线的焦点三角形[答案] D[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点, 所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ).因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1,所以S △APF =12×|PF |×1=12×3×1=32. 故选D.15.已知△OFQ 的面积为26,且OF →·FQ →=m ,其中O 为坐标原点.(1)设6<m <46,求OF →与FQ →的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝⎛⎭⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.考点 双曲线的标准方程的求法题点 待定系数法求双曲线的标准方程解 (1)因为⎩⎨⎧ 12|OF→|·|FQ →|sin (π-θ)=26,|OF→|·|FQ →|cos θ=m , 所以tan θ=46m. 又6<m <46,所以1<tan θ<4,即tan θ的取值范围为(1,4). (2)设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0), Q (x 1,y 1),则FQ →=(x 1-c ,y 1),所以S △OFQ =12|OF →|·|y 1|=26,则y 1=±46c. 又OF →·FQ →=m ,即(c,0)·(x 1-c ,y 1)=⎝⎛⎭⎫64-1c 2, 解得x 1=64c , 所以|OQ →|=x 21+y 21=38c 2+96c2≥12=23,当且仅当c =4时,取等号,|OQ →|最小,这时Q 的坐标为(6,6)或(6,-6).因为⎩⎪⎨⎪⎧ 6a 2-6b 2=1,a 2+b 2=16,所以⎩⎪⎨⎪⎧a 2=4,b 2=12, 于是所求双曲线的标准方程为x 24-y 212=1.。
§ 2.3双曲线2.3.1 双曲线及其标准方程课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念 (1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(3)双曲线中a 、b 、c 的关系是________________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B .x 23-y 2=1C .y 2-x 23=1D .x 22-y 22=1 4.双曲线x 2m -y23+m=1的一个焦点为(2,0),则m 的值为( )A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( ) A .x 24-y 2=1 B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y22=1题 号 1 2 3 4 5 6 答 案二、填空题8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________.9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=________________________________________________________________________. 三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)13.已知双曲线的一个焦点为F(7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.3 双曲线2.3.1 双曲线及其标准方程知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0)(2)y 2a 2-x 2b2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2 作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙, 只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以ba <0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0).由题知c =2,∴a 2+b 2=4.①又点(2,3)在双曲线上,∴22a 2-32b2=1.②由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.]4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.]5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4,又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2 =20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2. 8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线,所以(1+k )(1-k )>0.所以(k +1)(k -1)<0. 所以-1<k <1.解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2. 在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0.∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有 ⎩⎪⎨⎪⎧42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.所以双曲线的标准方程为y 24-x 25=1.方法二 将点A 的纵坐标代入椭圆方程得A (±15,4), 又两焦点分别为F 1(0,3),F 2(0,-3). 所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4, 即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1.11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C =2R ,代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R ,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2).12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1.设P (x ,y )(x ≥3),13.解 设双曲线的标准方程为x 2a 2-y 2b2=1,且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知,中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1,∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
第二章 2.3 课时作业17一、选择题1.双曲线x 210-y 22=1的焦距为( )A .32B .4 2C .33D .4 3解析:由双曲线的标准方程可知,a 2=10,b 2=2.于是有c 2=a 2+b 2=12,则2c =4 3.故选D.答案:D2.已知双曲线的a =5,c =7,则该双曲线的标准方程为( ) A.x 225-y 224=1 B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1 D.x 225-y 249=1或y 225-x 249=1 解析:因为b 2=c 2-a 2=49-25=24,且焦点位置不确定,所以所求双曲线的标准方程为x 225-y 224=1或y 225-x 224=1. 答案:C3.[2014·福建宁德一模]已知椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点,则a的值为( )A. 2B. 10C. 4D. 34解析:因为椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点(±7,0),则有a 2-9=7,∴a =4.选C.答案:C4.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A.x 24-y 2=1 B .x 2-y 24=1C.x 22-y 23=1 D.x 23-y 22=1 解析:设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.答案:B 二、填空题5.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =__________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:166.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为__________.解析:由双曲线方程x 264-y 236=1知,a =8,b =6,则c =a 2+b 2=10.∵P 是双曲线上一点,∴||PF 1|-|PF 2||=2a =16,又|PF 1|=17,∴|PF 2|=1或|PF 2|=33. 又|PF 2|≥c -a =2,∴|PF 2|=33. 答案:337.在△ABC 中,B (-6,0),C (6,0),直线AB ,AC 的斜率乘积为94,则顶点A 的轨迹方程为__________.解析:设顶点A 的坐标为(x ,y ),根据题意,得y x +6·y x -6=94,化简,得x 236-y 281=1(x ≠±6).故填x 236-y 281=1(x ≠±6). 答案:x 236-y 281=1(x ≠±6)三、解答题8.求适合下列条件的双曲线的标准方程:(1)以椭圆x 225+y 29=1的长轴端点为焦点,且经过点P (5,94);(2)过点P 1(3,-42),P 2(94,5).解:(1)因为椭圆x 225+y 29=1的长轴端点为A 1(-5,0),A 2(5,0),所以所求双曲线的焦点为F 1(-5,0),F 2(5,0).由双曲线的定义知,||PF 1|-|PF 2|| =⎪⎪⎪⎪(5+5)2+(94-0)2-(5-5)2+(94-0)2 =⎪⎪⎪⎪(414)2-(94)2=8,即2a =8,则a =4. 又c =5,所以b 2=c 2-a 2=9.故所求双曲线的标准方程为x 216-y 29=1.(2)设双曲线的方程为Ax 2+By 2=1(AB <0),分别将点P 1(3,-42),P 2(94,5)代入,得⎩⎪⎨⎪⎧9A +32B =18116A +25B =1,解得⎩⎨⎧A =-19B =116,故所求双曲线的标准方程为y 216-x 29=1.9.已知曲线x 216-m -y 2m=1.(1)当曲线是椭圆时,求实数m 的取值范围,并写出焦点坐标; (2)当曲线是双曲线时,求实数m 的取值范围,并写出焦点坐标. 解:(1)曲线为椭圆⇔⎩⎪⎨⎪⎧16-m >0-m >016-m ≠-m⇔⎩⎨⎧m <16m <0⇔m <0.即实数m 的取值范围是(-∞,0).此时,椭圆的焦点在x 轴上,坐标为(±4,0).(2)曲线为双曲线⇔(16-m )m >0⇔0<m <16.即实数m 的取值范围是(0,16). 此时,双曲线的焦点在x 轴上,坐标为(±4,0).。
2.3.1 双曲线及其标准方程基础梳理1.双曲线的定义.把平面内与两个定点F1,F2的距离的__________等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这________叫做双曲线的焦点,________________叫做双曲线的焦距.想一想:(1)双曲线的定义中,常数为什么要小于|F1F2|?(2)平面内与两个定点F1、F2的距离的差等于常数(小于|F1F2|)的点的轨迹是不是双曲线?2.双曲线的标准方程.想一想:如何判断方程a2-b2=1(a>0,b>0)和a2-b2=1(a>0,b>0)所表示的双曲线的焦点的位置?自测自评1.点F1,F2是两个定点,动点P满足|||PF1|-|PF2|=2a(a为非负常数),则动点P 的轨迹是( )A.两条射线B.一条直线C.双曲线D.前三种情况都有可能2.已知A(-3,0),B(3,0)若动点M满足||MA|-|MB||=4,则M的轨迹方程是( )A.x24-y25=1 B.y24-x25=1C.x 29-y 25=1D.y 29-x 25=1 3.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值范围是( )A .1<m <2B .m >2C .m <-2D .-2<m <2基础巩固1.若动点P 到F 1(-5,0)与P 到F 2(5,0)的距离的差为±8,则P 点的轨迹方程是( ) A.x 225+y 216=1 B.x 225-y 216=1 C.x 216+y 29=1 D.x 216-y 29=1 2.已知F 1(-5,0),F 2(5,0)为定点,动点P 满足|PF 1|-|PF 2|=2a ,当a =3和a =5时,P 点的轨迹分别为( )A .双曲线和一条直线B .双曲线的一支和一条直线C .双曲线和一条射线D .双曲线的一支和一条射线3.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( ) A .2 B .1 C. 2 D .34.若曲线x 2k +y 2k -1=1表示双曲线,则k 的取值范围是____________. 能力提升5.已知双曲线的中心在原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是( )A.x 24-y 2=1 B .x 2-y 24=1 C.x 22-y 23=1 D.x 23-y 22=1 6.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线7.F1、F2是双曲线y29-x216=1的两个焦点,M是双曲线上一点,且|MF1|·|MF2|=32,则△F1MF2的面积为________.8.已知双曲线的方程是x216-y28=1,点P在双曲线上,且到其中一个焦点F1的距离为10,点N是PF1的中点,则|ON|的大小(O为坐标原点)为________________.9.相距1 400 m的两个哨所,听到炮弹爆炸声的时间相差3 s,已知声速是340 m/s,建立直角坐标系,求出炮弹爆炸点所在的曲线方程.10.如图,圆E:(x+2)2+y2=4,点F(2,0),动圆P过点F,且与圆E内切于点M,求动圆P的圆心P的轨迹方程.答 案基础梳理1.差的绝对值 两个定点 两焦点间的距离想一想:[解析](1)①如果定义中常数改为等于|F 1F 2|,此时动点的轨迹是以F 1、F 2为端点的两条射线(包括端点).②如果定义中常数为0,此时动点轨迹为线段F 1F 2的垂直平分线.③如果定义中常数改为大于|F 1F 2|,此时动点轨迹不存在.(2)不是,是双曲线的某一支.在双曲线的定义中,P 为动点,F 1,F 2分别为双曲线的左、右焦点,则①|PF 1|-|PF 2|=2a ,曲线只表示双曲线的右支.②|PF 1|-|PF 2|=-2a ,曲线只表示双曲线的左支.2.x 2a 2-y 2b 2=1 y 2a 2-x 2b 2=1 a 2+b 2 想一想:[解析]在x 2,y 2的系数异号的前提下,如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样用比较分母的大小来判定焦点在哪一个坐标轴上.自测自评1.[答案]D2.[解析]根据双曲线的定义知,动点M 的轨迹是双曲线,焦点在x 轴上,a =2,c =3,所以b 2=5.所以轨迹方程为x 24-y 25=1.故选A. [答案]A3.[解析]由⎩⎪⎨⎪⎧m 2-4>0,m -1<0得m <-2. [答案]C基础巩固1.[解析]由双曲线定义知:2a =8,∴a =4,c =5,∴b =3.[答案]D2.[解析]∵|F 1F 2|=10,|PF 1|-|PF 2|=2a ,∴当a =3时,2a =6<|F 1F 2|,为双曲线的一支;当a =5时,2a =10=|F 1F 2|,为一条射线.[答案]D3.[解析]∵双曲线的标准方程为x 2a -y 22=1,∴a >0,焦点在x 轴上,∴a +2=4-a 2, 即a 2+a -2=0,解得a =1,a =-2(舍去).∴a =1.[答案]B4.[解析]只要k (k -1)<0即可.[答案](0,1)能力提升5.[解析]由题意知双曲线的焦点在x 轴,且另一焦点为F 2(5,0),又由中点坐标公式求得P 点坐标为(5,4),则|PF 1|=6,|PF 2|=4.∴|PF 1|-|PF 2|=2a =6-4=2<2 5.[答案]B6.[解析]将已知方程化为标准形式,根据项的系数符号进行判断.原方程可化为y 2k 2-1-x 21+k =1.∵k >1,∴k 2-1>0,1+k >0.∴已知方程表示的曲线为焦点在y 轴上的双曲线.[答案]C7.[解析]由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5),由双曲线定义得,||MF 1|-|MF 2||=6,联立|MF 1|·|MF 2|=32,得|MF 1|2+|MF 2|2=100=|F 1F 2|2,所以△F 1MF 2是直角三角形,从而其面积为S =12|MF 1|·|MF 2|=16. [答案]168.[解析]设双曲线的另一个焦点为F 2,连接PF 2,ON 是三角形PF 1F 2的中位线,所以|ON |=12|PF 2|,因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,所以|ON |=12|PF 2|=1或9.[答案]1或99.[答案]解:以两个哨所(设为A 、B )的连线为x 轴,两个哨所连线的中点为原点,建立直角坐标系,设爆炸点为P ,由已知,可得||PA |-|PB ||=3×340=1 020,所以点P 的轨迹是双曲线,根据已知,c =700,a =510,所以b 2=c 2-a 2=229 900, 所以,所求轨迹方程为x 2260 100-y 2229 900=1.10.[答案]解:由已知,圆E半径为r=2,设圆P的半径为R,则|PF|=|PM|=R,|ME|=r=2,|PE|=|PM|-|ME|=R-2,所以|PF|-|PE|=2,由双曲线的定义知,P的轨迹为双曲线的左支,因为a=1,c=2,所以b=3,所以,所求轨迹方程为x2-y23=1(x≤-1).。
双曲线及其标准方程导学案【学习要求】1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.【学法指导】本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.【知识要点】1.双曲线的定义把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2探究点一 双曲线的定义问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)6)5()5(2222=+--++y x y x ;(2)6)4()4(2222=+--++y x y x(3)方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 探究点二 双曲线的标准方程问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?问题2 两种形式的标准方程怎样进行区别?能否统一?问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.跟踪训练1 (1)过点(1,1)且ba=2的双曲线的标准方程是 ( )A .12122=-y x B .y 212-x 2=1 C .x 2-y 212=1D .x 212-y 2=1或y 212-x 2=1(2)若双曲线以椭圆x 216+y 29=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______探究点三 与双曲线定义有关的应用问题例2 已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).跟踪训练2 如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A . 3B . 5C .5- 3D .5+ 3例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.【当堂检测】1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )A .7B .23C .5或25D .7或234.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.【课堂小结】1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.【拓展提高】1.已知方程12522=---k y k x 的图形是双曲线,那么k 的取值范围是( )A .k >5B .k >5,或22<<-kC .k >2,,或2-<kD .22<<-k2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122,13=-__________602121的面积等于,则PF F PF F ∆=∠5.根据下列条件,求双曲线的标准方程. (1)过点P )415,3(,Q )5,316(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.(3))的双曲线。
选修2-1双曲线及其标准方程课时作业work Information Technology Company.2020YEAR课时作业11 双曲线及其标准方程时间:45分钟 满分:100分一、选择题(每小题5分,共30分) 1.双曲线x 216-y 29=1的焦点坐标为( ) A .(-7,0),(7,0) B .(0,-7),(0,7) C .(-5,0),(5,0) D .(0,-5),(0,5)【答案】 C【解析】 ∵a 2=16,b 2=9,∴c 2=a 2+b 2=25,∴c =5,又焦点在x 轴上,所以焦点坐标为(5,0)和(-5,0).故选C.2.设动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3) D.x 29-y 216=1(x ≥3) 【答案】 D【解析】 由题意得点M 到A 点的距离大于到B 点的距离,且|MA |-|MB |<10,所以动点M 的轨迹是双曲线的右支.3.已知定点A ,B ,且|AB |=4,动点P 满足|P A |-|PB |=3,则|P A |的最小值为( )A.12B.32C.72D .5【答案】 C 【解析】点P 的轨迹是以A ,B 为焦点的双曲线的右支,如右图所示,当P 与双曲线右支顶点M 重合时,|P A |最小,最小值为a +c =32+2=72,故选C.4.已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2.当点P 的纵坐标是12时,点P 到坐标原点的距离是( )A.62B.32C. 3 D .2【答案】 A【解析】 由题意知,点P 的轨迹是双曲线的左支,c =2,a =1,b =1,∴双曲线的方程为x 2-y 2=1,把y =12代入双曲线方程,得x 2=1+14=54.∴|OP |2=x 2+y 2=54+14=64,∴|OP |=62.5.已知双曲线x 29-y 216=1上一点P 到焦点F 1的距离为8,则P 到焦点F 2的距离为( )A .2B .2或14C .14D .16【答案】 B 【解析】 如图,设F 1、F 2分别是双曲线的左、右焦点, 由已知得a =3,b =4,c =5,∵双曲线右顶点到左焦点F 1的距离为a +c =8, ∴点P 在双曲线右顶点时,|PF 2|=c -a =5-3=2, 当点P 在双曲线左支上时,|PF 2|-|PF 1|=2a =6, ∴|PF 2|=|PF 1|+6=8+6=14.6.设F 1、F 2为双曲线x 25-y 24=1的两个焦点,P (3,1)是双曲线内的一点,点A 是双曲线上一动点,则|AP |+|AF 2|的最小值为( )A.37+4B.37-4C.37-2 5D.37+2 5 【答案】 C【解析】 如图,连接F 1P 交双曲线右支于点A 0,∵|AP |+|AF 2|=|AP |+|AF 1|-25,∴要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值,当A 落在A 0时,|AP |+|AF 1|=|PF 1|最小,最小值为37,∴|AP |+|AF 2|的最小值为37-2 5.二、填空题(每小题10分,共30分)7.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为双曲线C 的右支上一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于________.【答案】 48【解析】 由题意知|F 1F 2|=|PF 2|=10且|PF 1|-|PF 2|=6.∴|PF 1|=16.由勾股定理得PF 1上的高h =102-82=6.∴△PF 1F 2的面积S =12h ·|PF 1|=12×6×16=48.8.已知双曲线的一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是________.【答案】 x 2-y24=1【解析】 因为线段PF 1的中点坐标为(0,2),所以P 点坐标为(5,4),又因为焦点在x 轴上,且c =5,所以设双曲线的标准方程为x 2a 2-y 25-a 2=1,将(5,4)代入得5a 2-165-a 2=1,解得a 2=25或a 2=1,由c >a 知a =1,此时b 2=c 2-a 2=4,所以双曲线的标准方程为x 2-y24=1.9.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.【答案】 833【解析】 ∵a 2=3,b 2=4,∴c 2=7, ∴c =7,弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)10.(13分)双曲线x 29-y 216=1的两个焦点为F 1、F 2,点P 是双曲线上的点.若PF 1⊥PF 2,则点P 到x 轴的距离是多少?【解析】 解法一:由题意得F 1(-5,0)、F 2(5,0), 设P 的坐标是(x 0,y 0),又PF 1⊥PF 2, 则|PF 1|2+|PF 2|2=|F 1F 2|2,∴⎩⎪⎨⎪⎧(x 0+5)2+y 20+(x 0-5)2+y 20=100,x 209-y 2016=1.解得|y 0|=165,∴P 到x 轴的距离为165.解法二:以O 为圆心,以|F 1F 2|2=5为半径作圆x 2+y 2=25,与x 29-y 216=1联立得⎩⎪⎨⎪⎧x 2+y 2=25,x 29-y 216=1,解得y 2=16225,即|y |=165.∴P 到x 轴的距离为165.11.(13分)已知x 21-k -y 2|k |-3=-1,求当k 为何值时:①方程表示双曲线;②方程表示焦点在x 轴上的双曲线;③方程表示焦点在y 轴上的双曲线.【分析】 求参数的值或范围时,可先根据焦点的位置把方程化为相应的标准方程的形式,再根据其余条件确定方程中的a 2,b 2.【解析】 ①若方程表示双曲线,则需满足:⎩⎨⎧1-k >0|k |-3>0或⎩⎨⎧1-k <0,|k |-3<0,解得k <-3或1<k <3.②若方程表示焦点在x 轴上的双曲线,则1<k <3. ③若方程表示焦点在y 轴上的双曲线,则k <-3.【总结】 明确方程Ax 2+By 2=C 表示双曲线的条件,即AB <0,且C ≠0.化成x 2C A +y 2C B =1的形式,若焦点在x 轴上,则C A >0,CB<0;若焦点在y 轴上,则C B >0,CA <0.12.(14分)已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求椭圆的另一焦点F 的轨迹方程.【解析】 设F (x ,y )为轨迹上的任意一点, 因为A 、B 两点在以C 、F 为焦点的椭圆上,所以|F A |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长),所以|F A |+|CA |=|FB |+|CB |, 所以|F A |-|FB |=|CB |-|CA |=122+92-122+52=2.所以|F A |-|FB |=2.由双曲线的定义知,F 点在以A 、B 为焦点的双曲线的下半支上,所以点F的轨迹方程是y2-x2=1(y≤-1).48。
2.2.1双曲线及其标准方程课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案)2.1 双曲线及其标准方程1.双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.22,0B.62,0C.52,0D.(3,0)2.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为25,则该双曲线的方程为()A.x24-y2=1B.x23-y22=1C.x2-y24=1D.x22-y23=13.已知双曲线x2λ-3+y22-λ=1,焦点在y轴上,若焦距为4,则λ等于()A.32B.5C.7D.124.已知双曲线x24-y25=1上一点P到左焦点F1的距离为10,则PF1的中点N到坐标原点O的距离为()A.3或7B.6或14C.3D.75.如图,已知双曲线的方程为x2a2-y2b2=1(a>0,b>0),点A,B均在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为双曲线的左焦点,则△ABF1的周长为()A.2a+2mB.4a+2mC.a+mD.2a+4m6.与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在()A.一个椭圆上B.一个圆上C.一条抛物线上D.双曲线的一支上7.以椭圆x23+y24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是.8.已知点F1,F2分别是双曲线x29-y216=1的左、右焦点,若点P是双曲线左支上的点,且|PF1|·|PF2|=32,则△F1PF2的面积为.9.已知与双曲线x216-y29=1共焦点的双曲线过点P-52,-6,求该双曲线的标准方程.能力达标10.“mn<0”是方程“mx2+ny2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.已知平面内两定点A(-5,0),B(5,0),动点M满足|MA|-|MB|=6,则点M的轨迹方程是()A.x216-y29=1B.x216-y29=1(x≥4)C.x29-y216=1D.x29-y216=1(x≥3)12.动圆与圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹是()A.双曲线的一支B.圆C.椭圆D.双曲线13.若双曲线x2n-y2=1(n>1)的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为()A.1B.12C.2D.414.已知左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,点P在双曲线C上,若|PF1|=3,则|PF2|=()A.3B.6C.9D.1215.若曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,则m的取值范围为.16.焦点在x轴上的双曲线经过点(42,-3),且Q(0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为.17.已知双曲线E:x216-y24=1的左、右焦点分别为F1,F2.(1)若点M在双曲线上,且MF1·MF2=0,求点M到x轴的距离;(2)若双曲线C与双曲线E有相同的焦点,且过点(32,2),求双曲线C 的方程.18.已知△OFQ的面积为26,且OF·FQ=m,其中O为坐标原点.(1)设6(2)设以O为中心,F为其中一个焦点的双曲线经过点Q,如图所示,|OF|=c,m=64-1c2,当|OQ|取得最小值时,求此双曲线的标准方程.1.双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.22,0B.62,0C.52,0D.(3,0)答案B解析将双曲线方程化为标准方程为x2-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴c=62,故右焦点坐标为62,0.2.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为25,则该双曲线的方程为()A.x24-y2=1B.x23-y22=1C.x2-y24=1D.x22-y23=1答案C解析由题意得|PF1|-|PF2|=2a=b,c2=a2+b2,2c=25,解得a2=1,b2=4,则该双曲线的方程为x2-y24=1.3.已知双曲线x2λ-3+y22-λ=1,焦点在y轴上,若焦距为4,则λ等于()A.32B.5C.7D.12答案D解析根据题意可知,双曲线的标准方程为y22-λ-x23-λ=1.由其焦距为4,得c=2,则有c2=2-λ+3-λ=4,解得λ=12.4.已知双曲线x24-y25=1上一点P到左焦点F1的距离为10,则PF1的中点N到坐标原点O的距离为()A.3或7B.6或14C.3D.7答案A解析连接ON,ON是△PF1F2的中位线,∴|ON|=12|PF2|,∵||PF1|-|PF2||=4,|PF1|=10,∴|PF2|=14或|PF2|=6,∴|ON|=7或|ON|=3.5.如图,已知双曲线的方程为x2a2-y2b2=1(a>0,b>0),点A,B均在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为双曲线的左焦点,则△ABF1的周长为()A.2a+2mB.4a+2mC.a+mD.2a+4m答案B解析由双曲线的定义,知|AF1|-|AF2|=2a,|BF1|-|BF2|=2a.又|AF2|+|BF2|=|AB|,所以△ABF1的周长为|AF1|+|BF1|+|AB|=4a+2|AB|=4a+2m.6.与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在()A.一个椭圆上B.一个圆上C.一条抛物线上D.双曲线的一支上答案D解析由x2+y2-8x+12=0,得(x-4)2+y2=4,画出圆x2+y2=1与(x-4)2+y2=4的图象如图,设圆P的半径为r,∵圆P与圆O和圆M都外切,∴|PM|=r+2,|PO|=r+1,则|PM|-|PO|=1<4,∴点P在以O,M为焦点的双曲线的左支上.7.以椭圆x23+y24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是.答案y2-x23=1 解析由题意知,双曲线的焦点在y轴上,设双曲线的标准方程为y2a2-x2b2=1,则a=1,c=2,所以b2=3,所以双曲线的标准方程为y2-x23=1.8.已知点F1,F2分别是双曲线x29-y216=1的左、右焦点,若点P是双曲线左支上的点,且|PF1|·|PF2|=32,则△F1PF2的面积为.答案16 解析因为P是双曲线左支上的点,所以|PF2|-|PF1|=6,两边平方得|PF1|2+|PF2|2-2|PF1|·|PF2|=36,所以|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.在△F1PF2中,由余弦定理,得cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1|·|PF2|=100-1002|PF1|·|PF2|=0,所以∠F1PF2=90°,所以S△F1PF2=12|PF1|·|PF2|=12×32=16.9.已知与双曲线x216-y29=1共焦点的双曲线过点P-52,-6,求该双曲线的标准方程.解已知双曲线x216-y29=1,则c2=16+9=25,∴c=5.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).依题意知b2=25-a2,故所求双曲线方程可写为x2a2-y225-a2=1.∵点P-52,-6在所求双曲线上,∴代入有(-52)2a2-(-6)225-a2=1,化简得4a4-129a2+125=0,解得a2=1或a2=1254.当a2=1254时,b2=25-a2=25-1254=-254<0,不合题意,舍去,∴a2=1,b2=24,∴所求双曲线的标准方程为x2-y224=1.能力达标10.“mn<0”是方程“mx2+ny2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为mn<0,所以m,n均不为0且异号,方程mx2+ny2=1,可化为x21m+y21n=1,因为1m与1n异号,所以方程x21m+y21n=1表示双曲线,故“mn<0”是“方程mx2+ny2=1表示双曲线”的充分条件;反之,若mx2+ny2=1表示双曲线,则其方程可化为x21m+y21n=1,可知1m与1n异号,则必有mn<0,故“mn<0”是“方程mx2+ny2=1表示双曲线”的必要条件.综上可得,“mn<0”是方程“mx2+ny2=1表示双曲线”的充要条件.11.已知平面内两定点A(-5,0),B(5,0),动点M 满足|MA|-|MB|=6,则点M的轨迹方程是()A.x216-y29=1B.x216-y29=1(x≥4)C.x29-y216=1D.x29-y216=1(x≥3)答案D解析由|MA|-|MB|=6,且6A.双曲线的一支B.圆C.椭圆D.双曲线答案A解析设动圆的圆心为M,半径为r,圆x2+y2=1与x2+y2-8x+12=0的圆心分别为O1和O2,半径分别为1和2,由两圆外切的充要条件,得|MO1|=r+1,|MO2|=r+2.∴|MO2|-|MO1|=1,又|O1O2|=4,∴动点M的轨迹是双曲线的一支(靠近O1).13.若双曲线x2n-y2=1(n>1)的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为()A.1B.12C.2D.4答案A解析设点P在双曲线的右支上,则|PF1|-|PF2|=2n,已知|PF1|+|PF2|=2n+2,解得|PF1|=n+2+n,|PF2|=n+2-n,|PF1|·|PF2|=2.又|F1F2|=2n+1,则|PF1|2+|PF2|2=|F1F2|2,∴△PF1F2为直角三角形,∠F1PF2=90°,∴S△PF1F2=12|PF1|·|PF2|=12×2=1.14.已知左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,点P在双曲线C上,若|PF1|=3,则|PF2|=()A.3B.6C.9D.12答案C解析由左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,可得15a2-69=1,解得a=3,b=1,c=10,a+c>3,点P在双曲线C 上,若|PF1|=3,可得P在双曲线的左支上,则|PF2|=2a+|PF1|=6+3=9.故选C.15.若曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,则m的取值范围为.答案(2,+∞)解析由曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,可得x21m-y21m-2=1,即有m>0,且m-2>0,解得m>2.16.焦点在x轴上的双曲线经过点(42,-3),且Q(0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为.答案x216-y29=1解析设焦点F1(-c,0),F2(c,0)(c>0),则由QF1⊥QF2,得kQF1·kQF2=-1,∴5c·5-c=-1,∴c=5,设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),∵双曲线过点(42,-3),∴32a2-9b2=1.又c2=a2+b2=25,∴a2=16,b2=9,∴双曲线的标准方程为x216-y29=1.17.已知双曲线E:x216-y24=1的左、右焦点分别为F1,F2.(1)若点M在双曲线上,且MF1·MF2=0,求点M到x轴的距离;(2)若双曲线C与双曲线E有相同的焦点,且过点(32,2),求双曲线C 的方程.解(1)如图所示,不妨设点M在双曲线E的右支上,点M到x轴的距离为h,MF1·MF2=0,则MF1⊥MF2,设|MF1|=m,|MF2|=n,由双曲线定义,知m-n=2a=8,①又m2+n2=(2c)2=80,②由①②得mn=8,∴12mn=4=12|F1F2|·h,∴h=255.(2)设所求双曲线C的方程为x216-λ-y24+λ=1(-4(2)设以O为中心,F为其中一个焦点的双曲线经过点Q,如图所示,|OF|=c,m=64-1c2,当|OQ|取得最小值时,求此双曲线的标准方程.解(1)因为12|OF||FQ|sin(π-θ)=26,|OF||FQ|cosθ=m,所以tanθ=46m.又6θ<4,即tanθ的取值范围为(1,4).(2)设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),Q(x1,y1),则FQ=(x1-c,y1),所以S△OFQ=12|OF|·|y1|=26,则y1=±46c.又OF·FQ=m,即(c,0)·(x1-c,y1)=64-1c2,解得x1=64c,所以|OQ|=x12+y12=38c2+96c2≥12=23,当且仅当c=4时,取等号,此时|OQ|最小,这时Q的坐标为(6,6)或(6,-6).因为6a2-6b2=1,a2+b2=16,所以a2=4,b2=12.于是所求双曲线的标准方程为x24-y212=1.。
§ 2.3双曲线 2.3.1 双曲线及其标准方程课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念 (1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(3)双曲线中a 、b 、c 的关系是________________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B .x 23-y 2=1C .y 2-x 23=1 D .x 22-y 22=14.双曲线x 2m -y23+m=1的一个焦点为(2,0),则m 的值为( )A .12 B .1或3 C .1+22 D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y22=1二、填空题8.已知方程x 21+k -y21-k=1表示双曲线,则k 的取值范围是________.9.F 1、F 2是双曲线x 29-y216=1的两个焦点,P 在双曲线上且满足|PF 1|²|PF 2|=32,则∠F 1PF 2=________________________________________________________________________. 三、解答题10.设双曲线与椭圆x 227+y236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞) D .[74,+∞)13.已知双曲线的一个焦点为F(7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得. 2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.3 双曲线2.3.1 双曲线及其标准方程知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0)(2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙, 只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以ba <0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0).由题知c =2,∴a 2+b 2=4.①又点(2,3)在双曲线上,∴22a 2-32b2=1.②由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.]4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.]5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.] 7.2解析 ∵||PF 1|-|PF 2||=4,又PF 1⊥PF 2,|F 1F 2|=25,∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|²|PF 2|=2. 8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线,所以(1+k )(1-k )>0.所以(k +1)(k -1)<0. 所以-1<k <1. 9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2. 在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α= r 1-r 2 2+2r 1r 2-4c 22r 1r 2=36+64-10064=0.∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧42a2- ±15 2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4), 又两焦点分别为F 1(0,3),F 2(0,-3). 所以2a =| ±15-0 2+ 4+3 2- ±15-0 2+ 4-3 2|=4,即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1.11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C =2R ,代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12²|BC |2R ,又|BC |=8,所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以a=2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2).12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1.设P (x ,y )(x ≥3),13.解 设双曲线的标准方程为x 2a -y 2b=1,且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知,中点坐标为⎝ ⎛⎭⎪⎫-23,-53.设M (x 1,y 1),N (x 2,y 2),则由⎩⎪⎨⎪⎧x 21a -y 21b=1,x 22a 2-y22b 2=1,得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0. ∵⎩⎪⎨⎪⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
2.3.1 双曲线及其标准方程一、选择题1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是( ) A .-1<m <3B .m >-1C .m >3D .m <-1[答案] B[解析] 依题意应有m +1>0,即m >-1.2.过点(1,1),且b a =2的双曲线的标准方程是( ) A.x 212-y 2=1 B.y 212-x 2=1 C .x 2-y 212=1 D.x 212-y 2=1或y 212-x 2=1 [答案] D[解析] 由于b a =2,∴b 2=2a 2.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 22a 2=1,代入(1,1)点,得a 2=12.此时双曲线方程为x 212-y 2=1.同理求得焦点在y 轴上时,双曲线方程为y 212-x 2=1.3.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在y 轴上的双曲线D .焦点在x 轴上的双曲线[答案] C[解析] 将已知方程化为标准形式,根据项的系数符号进行判断.原方程可化为y 2k 2-1-x 21+k =1.∵k >1,∴k 2-1>0,1+k >0.∴已知方程表示的曲线为焦点在y 轴上的双曲线.4.双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值是( )A .1B .-1 C.653 D .-653[答案] B[解析] 原方程可化为x 21k -y 28k=1,由焦点坐标是(0,3)可知c =3,且焦点在y 轴上,∴k <0.c 2=-1k -8k =-9k=9,∴k =-1,故选B. 5.若双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .(22,0) B .(52,0) C .(62,0) D .(3,0)[答案] C[解析] 将方程化为标准方程x 2-y 212=1, ∴c 2=1+12=32,∴c =62,故选C. 6.设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos ∠F 1PF 2等于( ) A.14 B.13 C.19 D.35[答案] B[解析] 设|PF 1|=d 1,|PF 2|=d 2,则d 1+d 2=26,①|d 1-d 2|=23,②①2+②2,得d 21+d 22=18. ①2-②2,得2d 1d 2=6.而c =2,∴cos ∠F 1PF 2=d 21+d 22-4c 22d 1d 2=18-166=13. 7.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)[答案] A[解析] ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.二、填空题8.已知双曲线x 225-y 29=1的两个焦点分别为F 1,F 2,若双曲线上的点P 到点F 1的距离为12,则点P 到点F 2的距离为________.[答案] 22或2[解析] 设F 1为左焦点,F 2为右焦点,当点P 在双曲线左支上时,|PF 2|-|PF 1|=10,|PF 2|=22;当点P 在双曲线右支上时,|PF 1|-|PF 2|=10,|PF 2|=2.9.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________.[答案] x 216-y 29=1 [解析] 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得kQF 1·kQF 2=-1,∴5c ·5-c=-1,∴c =5. 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), ∵双曲线过(42,-3),∴32a 2-9b 2=1, 又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9.∴双曲线的标准方程为x 216-y 29=1. 10.若双曲线x 216-y 2m=1的焦距为10,则m =________. [答案] 9[解析] 由题意知,a =4,b =m ,c =5,又由a 2+b 2=c 2得,16+m =25,∴m =9.11.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.[答案] 2 3[解析] 设P 在双曲线的右支上,|PF 1|=2+x ,|PF 2|=x (x >0),因为PF 1⊥PF 2, 所以(x +2)2+x 2=(2c )2=8,所以x =3-1,x +2=3+1,所以|PF 2|+|PF 1|=3-1+3+1=2 3.三、解答题12.已知△ABC 的一边的两个顶点B (-a,0),C (a,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形.解 设顶点A 的坐标为(x ,y ),则k AB =y x +a ,k AC =y x -a. 由题意,得y x +a ·y x -a=m ,即x 2a 2-y 2ma 2=1(y ≠0). 当m >0时,轨迹是中心在原点,焦点在x 轴上的双曲线(除去x 轴的两个交点);当m <0且m ≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x 轴的两个交点),其中当-1<m <0时,椭圆焦点在x 轴上;当m <-1时,椭圆焦点在y 轴上; 当m =-1时,轨迹是圆心在原点,半径为a 的圆(除去与x 轴的两个交点).13.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1、F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故设双曲线方程为x 2a 2-y 2b 2=1, 则有⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2, 所以双曲线的标准方程为x 23-y 22=1. (2)不妨设M 点在右支上,则有|MF 1|-|MF 2|=23,又|MF 1|+|MF 2|=63,故解得|MF 1|=43,|MF 2|=23,又|F 1F 2|=25,因此在△MF 1F 2中,|MF 1|边最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22·|MF 2|·|F 1F 2|<0, 所以∠MF 2F 1为钝角.故△MF 1F 2为钝角三角形.。
课时作业10 双曲线及其标准方程 |基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )A .双曲线B .双曲线的一支C .直线D .一条射线解析:F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.答案:D 2.已知双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B.⎝ ⎛⎭⎪⎫52,0 C.⎝ ⎛⎭⎪⎫62,0 D .(3,0) 解析:将双曲线方程化为标准方程,即x 21-y 212=1,∴a 2=1,b 2=12,∴c =a 2+b 2=62,∴右焦点坐标为⎝ ⎛⎭⎪⎫62,0.答案:C3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x23-y 2=1C .y 2-x 23=1 D.x 22-y 22=1 解析:由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2, ∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3,因此所求双曲线的标准方程为x 2-y23=1.答案:A4.下面各选项中的双曲线,与x212-y224=1共焦点的双曲线是()A.x212+y214=1 B.y224-x212=1C.x210-y226=1 D.x210+y226=1解析:方法一因为所求曲线为双曲线,所以可排除选项A,D;又双曲线x212-y224=1的焦点在x轴上,所以排除选项B,综上可知,选C.方法二与x212-y224=1共焦点的双曲线系方程为x212+λ-y224-λ=1,对比四个选项中的曲线方程,发现只有选项C中的方程符合条件(此时λ=-2).答案:C5.已知定点A,B且|AB|=4,动点P满足|P A|-|PB|=3,则|P A|的最小值为()A.12 B.32C.72D.5解析:如图所示,点P是以A,B为焦点的双曲线的右支上的点,当P在M处时,|P A|最小,最小值为a+c=32+2=72.答案:C二、填空题(每小题5分,共15分)6.设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.解析:由点F(0,5)可知该双曲线y2m-x29=1的焦点落在y轴上,所以m>0,且m+9=52,解得m=16.答案:167.已知P是双曲线x264-y236=1上一点,F1,F2是双曲线的左、右焦点,且|PF1|=17,求|PF2|=________.解析:由双曲线方程x264-y236=1可得a=8,b=6,c=10,由双曲线的图象可得点P到右焦点F2的距离d≥c-a=2.因为||PF1|-|PF2||=16,|PF1|=17,所以|PF2|=1(舍去)或|PF2|=33.答案:338.已知双曲线E:x2a2-y2b2=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的标准方程是________.解析:如图,由题意不妨设|AB|=3,则|BC|=2.设AB,CD的中点分别为M,N,在Rt△BMN中,|MN|=2c=2,故|BN|=|BM|2+|MN|2=⎝⎛⎭⎪⎫322+22=52.由双曲线的定义可得2a=|BN|-|BM|=52-32=1,即a2=14.而2c=|MN|=2,从而c=1,b2=34. 所以双曲线E的标准方程是x214-y234=1.答案:x214-y234=1三、解答题(每小题10分,共20分)9.已知x21-k-y2|k|-3=-1,当k为何值时,(1)方程表示双曲线?|能力提升|(20分钟,40分)11.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则点P 的轨迹方程是( )A .x 2-y 28=1(x >1)B .x 2-y28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)解析:如图,设过M ,N 的直线与圆C 相切于R ,S ,则|PR |=|PS |,|MR |=|MB |,|SN |=|NB |, 所以|PM |=|PR |+|RM | =|PR |+|MB |, |PN |=|PS |+|SN | =|PS |+|NB |,所以|PM |-|PN |=|MB |-|NB | =2<|MN |,所以由双曲线定义知,P 点的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的右支,因为2a =2,所以a =1,c =3, 所以b 2=c 2-a 2=8,所以点P 的轨迹方程为x 2-y28=1(x >1). 故选A. 答案:A12.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1→·PF 2→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为______________.解析:由题意可设双曲线方程为由Ruize收集整理。
课时作业11双曲线及其标准方程
时间:45分钟满分:100分一、选择题(每小题5分,共30分)
1.双曲线x2
16-y2
9=1的焦点坐标为()
A.(-7,0),(7,0)B.(0,-7),(0,7)
C.(-5,0),(5,0) D.(0,-5),(0,5)
【答案】C
【解析】∵a2=16,b2=9,∴c2=a2+b2=25,∴c=5,又焦点在x轴上,所以焦点坐标为(5,0)和(-5,0).故选C.
]
2.设动点M到A(-5,0)的距离与它到B(5,0)的距离的差等于6,则P点的轨迹方程是()
-y2
16=1 -
x2
16=1
-y2
16=1(x≤-3) -
y2
16=1(x≥3)
【答案】D
【解析】由题意得点M到A点的距离大于到B点的距离,且|MA|-|MB|<10,所以动点M的轨迹是双曲线的右支.3.已知定点A,B,且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值为()
D.5
(
【答案】C
【解析】
点P 的轨迹是以A ,B 为焦点的双曲线的右支,如右图所示,当P 与双曲线右支顶点M 重合时,|PA |最小,最小值为a +c =32+2=7
2,故选C.
4.已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2.当点P 的纵坐标是1
2时,点P 到坐标原点的距离是( )
D .2
【答案】 A
>
【解析】 由题意知,点P 的轨迹是双曲线的左支,c =2,a =
1,b =1,∴双曲线的方程为x 2-y 2=1,把y =1
2代入双曲线方程,得x 2
=1+14=5
4.
∴|OP |2
=x 2
+y 2
=54+14=64,∴|OP |=6
2.
5.已知双曲线x 29-y 2
16=1上一点P 到焦点F 1的距离为8,则P 到焦点F 2的距离为( )
A.2 B.2或14
C.14 D.16
【答案】B
【解析】如图,
·
设F1、F2分别是双曲线的左、右焦点,
由已知得a=3,b=4,c=5,
∵双曲线右顶点到左焦点F1的距离为a+c=8,
∴点P在双曲线右顶点时,|PF2|=c-a=5-3=2,当点P在双曲线左支上时,|PF2|-|PF1|=2a=6,∴|PF2|=|PF1|+6=8+6=14.
6.设F1、F2为双曲线x2
5-
y2
4=1的两个焦点,P(3,1)是双曲线内的
一点,点A是双曲线上一动点,则|AP|+|AF2|的最小值为()+4 -4
>
-2 5 +25
【答案】C
【解析】如图,连接F1P交双曲线右支于点A0,∵|AP|+|AF2|=|AP|+|AF1|-25,∴要求|AP|+|AF2|的最小值,只需求|AP|+
|AF 1|的最小值,当A 落在A 0时,|AP |+|AF 1|=|PF 1|最小,最小值为37,∴|AP |+|AF 2|的最小值为37-2 5.
二、填空题(每小题10分,共30分)
7.已知双曲线C :x 29-y 2
16=1的左、右焦点分别为F 1、F 2,P 为双曲线C 的右支上一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于________.
【答案】 48
【解析】 由题意知|F 1F 2|=|PF 2|=10且|PF 1|-|PF 2|=6.∴|PF 1|=16. "
由勾股定理得PF 1上的高h =102-82=6.
∴△PF 1F 2的面积S =12h ·|PF 1|=1
2×6×16=48.
8.已知双曲线的一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是________.
【答案】 x 2
-y 2
4=1
【解析】 因为线段PF 1的中点坐标为(0,2),所以P 点坐标为(5,4),又因为焦点在x 轴上,且c =5,所以设双曲线的标准方程为x 2
a 2-
y 25-a
2=1,将(5,4)代入得5a 2-165-a 2=1,解得a 2=25或a 2
=1,由c >a 知a =1,此时b 2=c 2-a 2=4,所以双曲线的标准方程为x 2-y
2
4=
1.
9.过双曲线x 23-y 2
4=1的焦点且与x 轴垂直的弦的长度为________.
【答案】 83
3
【解析】 ∵a 2=3,b 2=4,∴c 2=7,
~
∴c =7,弦所在直线方程为x =7,
由⎩⎪⎨⎪⎧
x =
7x 23-y 2
4=1得y 2
=163,∴|y |=433,弦长为83
3.
三、解答题(本题共3小题,共40分.解答应写出必要的文字说
明、证明过程或演算步骤)
10.(13分)双曲线x 29-y 2
16=1的两个焦点为F 1、F 2,点P 是双曲线上的点.若PF 1⊥PF 2,则点P 到x 轴的距离是多少
【解析】 解法一:由题意得F 1(-5,0)、F 2(5,0), 设P 的坐标是(x 0,y 0),又PF 1⊥PF 2, 则|PF 1|2+|PF 2|2=|F 1F 2|2,
—
∴⎩⎨
⎧
?x 0+5?2+y 20+?x 0-5?2+y 2
0=100,x 209-y 20
16=1.
解得|y 0|=16
5,
∴P 到x 轴的距离为16
5.
解法二:以O 为圆心,以|F 1F 2|2=5为半径作圆x 2+y 2=25,与x
2
9-
y 2
16=1联立得
⎩⎨⎧
x 2+y 2=25,x 29-y 2
16=1,
解得y 2
=16225,即|y |=165.
∴P 到x 轴的距离为16
5.
11.(13分)已知x 21-k -y 2
|k |-3=-1,求当k 为何值时:①方程表
示双曲线;②方程表示焦点在x 轴上的双曲线;③方程表示焦点在y 轴上的双曲线.
【分析】 求参数的值或范围时,可先根据焦点的位置把方程化为相应的标准方程的形式,再根据其余条件确定方程中的a 2,b 2.
【解析】 ①若方程表示双曲线,则需满足:
》
⎩⎪⎨⎪⎧ 1-k >0|k |-3>0或⎩⎪⎨⎪⎧
1-k <0,|k |-3<0,
解得k <-3或1<k <3.
②若方程表示焦点在x 轴上的双曲线,则1<k <3. ③若方程表示焦点在y 轴上的双曲线,则k <-3.
【总结】 明确方程Ax 2+By 2=C 表示双曲线的条件,即AB <0,且C ≠0.化成x 2C A +y 2C B
=1的形式,若焦点在x 轴上,则C A >0,C
B <0;若焦点
在y轴上,则C
B>0,C
A<0.
12.(14分)已知定点A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,求椭圆的另一焦点F的轨迹方程.
【解析】设F(x,y)为轨迹上的任意一点,
因为A、B两点在以C、F为焦点的椭圆上,
所以|FA|+|CA|=2a,|FB|+|CB|=2a(其中a表示椭圆的长半轴长),
所以|FA|+|CA|=|FB|+|CB|,
所以|FA|-|FB|=|CB|-|CA|=122+92-122+52=2.
所以|FA|-|FB|=2.
由双曲线的定义知,F点在以A、B为焦点的双曲线的下半支上,
所以点F的轨迹方程是y2-x2
48=1(y≤-1).。