Workbench教程(四)
- 格式:pdf
- 大小:1.03 MB
- 文档页数:12
workbench使用教程1. 打开Workbench- 进入你的计算机,找到并双击打开Workbench应用程序。
2. 创建新项目- 在Workbench主界面上找到并点击"新建项目"按钮。
- 在弹出的对话框中,输入项目名称和存储位置,并点击"确定"。
3. 新建脚本文件- 在项目界面中,选择你想要创建脚本文件的文件夹。
- 右键点击文件夹,并选择"新建文件"。
- 在弹出的对话框中,输入文件名称以及文件类型(例如python脚本文件.py)。
- 点击"确定"。
4. 编写脚本- 双击打开你创建的脚本文件。
- 在编辑器中编写你的代码。
5. 运行脚本- 点击编辑器上方的"运行"按钮。
- 或按下键盘上的F5键。
- Workbench将会运行并显示结果。
6. 调试脚本- 在编辑器中设置断点:在你想要暂停执行的代码行上右键点击,并选择"设置断点"。
- 点击编辑器上方的"调试"按钮。
- 或按下键盘上的F9键。
- Workbench将会逐行执行代码,并在断点处暂停执行。
7. 查看输出- 在编辑器下方的输出窗口中,你会看到脚本的运行结果或调试信息。
8. 保存项目- 点击工具栏上的"保存"按钮。
- 或按下键盘上的Ctrl + S组合键。
9. 导出项目- 点击工具栏上的"导出项目"按钮。
- 在弹出的对话框中,选择要导出的项目文件夹,然后点击"确定"。
- Workbench将会导出项目的所有文件和文件夹。
10. 关闭Workbench- 点击工具栏上的"关闭"按钮。
- 或按下键盘上的Ctrl + Q组合键。
- 选择"是"以确认关闭。
workbench培训教程Workbench是一款可视化编程软件,它可以帮助用户轻松快捷地开发和部署应用程序。
如果你是一个程序员或者想学习编程的人,Workbench可以为你提供一个更便利的编程环境。
本文将为大家介绍Workbench的基本使用方法和常见编程技巧。
1、安装Workbench的安装非常简单,只需要首先到官网上下载安装程序,然后打开安装程序,根据提示一步步安装即可。
安装完成后,就可开始使用Workbench。
2、创建新项目打开Workbench后,首先需要创建一个新项目。
点击“File”菜单,选择“New Project”,在弹出的对话框中填写项目名称和路径,选择所需的开发语言,比如Java或Python等,然后点击“OK”按钮,即可创建一个新项目。
3、创建文件在新项目中,需要创建所需的文件。
点击“File”菜单,选择“New File”,在弹出的对话框中填写文件名称和路径,选择所需的文件类型,比如源代码文件或配置文件等,然后点击“OK”按钮,即可创建一个新文件。
4、编辑代码在新文件中,需要编写所需的代码。
Workbench提供了一个可视化的代码编辑器,支持语法高亮和代码补全等功能。
点击“Edit”菜单,选择“Code Editor”,即可打开代码编辑器,开始编写代码。
5、编译运行在代码编辑器中完成代码编写后,需要进行编译和运行。
点击“Build”菜单,选择“Build Project”,即可编译整个项目。
点击“Run”菜单,选择“Run Project”,即可运行整个项目。
6、调试程序在程序运行过程中,可能会出现一些问题,需要进行调试。
Workbench提供了一个可视化的调试工具,支持断点调试和变量跟踪等功能。
点击“Debug”菜单,选择“Debug Project”,即可进入调试模式。
7、部署应用在程序完成开发和调试后,需要进行部署。
Workbench提供了一个可视化的部署工具,支持将应用程序部署到各种平台,比如服务器,云服务等。
ANSYS Workbench 疲劳分析A 疲劳概述•结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关•疲劳通常分为两类:—高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。
因此,应力通常比材料的极限强度低。
应力疲劳(Stress-based)用于高周疲劳。
—低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算。
•在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。
接下来,我们将对基于应力疲劳理论的处理方法进行讨论。
…恒定振幅载荷•在前面曾提到,疲劳是由于重复加载引起:—当最大和最小的应力水平恒定时,称为恒定振幅载荷。
我们将针对这种最简单的形式,首先进行讨论。
—否则,则称为变化振幅或非恒定振幅载荷。
(本章之后将给予讨论)。
命和破坏…Fatigue Tool —平均应力影响—在前面曾提及,平均应力会影响S-N曲线的结果。
而“Analysis Type”说明了程序对平均应力的处理方法:•“SN-None”:忽略平均应力的影响•“SN-Mean Stress Curves”:使用多重S-N曲线(如果定义的话)•“SN-Goodman,”“SN-Soderberg,”和“SN-Gerber”:可以使用平均应力修正理论…Fatigue Tool —平均应力的影响—如果有可用的试验数据,那么建议使用多重S-N曲线(SN-Mean Stress Curves)—但是,如果多重S-N曲线是不可用的,那么可以从三个平均应力修正理论中选择。
这里的方法在于将定义的单S-N曲线“转化”到考虑平均应力的影响:1。
对于给定的疲劳循环次数,随着平均应力的增加,应力幅将有所降低2。
随着应力幅趋近零,平均应力将趋近于极限(屈服)强度3。
(完整版)手把手教你用ANSYSworkbench手把手教你用ANSYS workbench 本文的目的主要是帮助那些没有接触过ansys workbench的人快速上手使用这个软件。
在本文里将展示ansys workbench如何从一片空白起步,建立几何模型、划分网格、设置约束和边界条件、进行求解计算,以及在后处理中运行疲劳分析模块,得到估计寿命的全过程。
一、建立算例打开ansys workbench,这时还是一片空白。
首先我们要清楚自己要计算的算例的分析类型,一般对于结构力学领域,有静态分析(Static Structural)、动态分析(Rigid Dynamics)、模态分析(Modal)。
在Toolbox窗口中用鼠标点中算例的分析类型,将它拖出到右边白色的Project Schematic窗口中,就会出现一个算例框图。
比如本文选择进行静态分析,将Static Structural条目拖出到右边,出现A框图。
在算例框图中,有多个栏目,这些是计算一个静态结构分析算例需要完成的步骤,完成的步骤在它右边会出现一个绿色的勾,没有完成的步骤,右边会出现问号,修改过没有更新的步骤右边会出现循环箭头。
第二项EngineeringData已经默认设置好了钢材料,如果需要修改材料的参数,直接双击点开它,会出现Properties窗口,一些主要用到的材料参数如下图所示:点中SN曲线,可在右侧或者下方的窗口中找到SN曲线的具体数据。
窗口出现的位置应该与个人设置的窗口布局有关。
二、几何建模现在进行到第三步,建立几何模型。
右键点击Grometry条目可以创建,或者在Toolbox窗口的Component Systems下面找到Geometry条目,将它拖出来,也可以创建,拖出来之后,出现一个新的框图,几何模型框图。
双击框图中的Geometry,会跳出一个新窗口,几何模型设计窗口,如下图所示:点击XYPlane,再点击创建草图的按钮,表示在XY平面上创建草图,如下图所示:右键点击XYPlane,选择Look at,可将右边图形窗口的视角旋转到XYPlane 平面上:创建了草图之后点击XYPlane下面的Sketch2(具体名字可按用户需要修改),再点击激活Sketching页面:在Sketching页面可以创建几何体,从基本的轮廓线开始创建起,我们现在右边的图形窗口中随便画一条横线:画出的横线长度是鼠标随便点出来的,并不是精确地等于用户想要的长度,甚至可能与想要的长度相差好多个数量级。
1文件存储(1)仿真模块与优化模块文件夹如下图所示:(2)仿真流程Workbench界面流程节点,对应后台文件如下图所示。
1.材料文件;2.几何文件;3.设置及网格、结果文件2优化参数设置左侧为输入输出参数界面,右侧为工况列表。
目标:提取结果最小值3ANSYS WORKBENCH优化设计3.1目标驱动优化(Driven optimization)和多学科项目类似。
算例:Direct_optimization.wbpj3.1.1确定输入输出参数输入输出参数如下图所示:3.1.2设置优化目标设置一个或者多个优化目标,如将质量最小化作为目标,并设置质量范围,如下图所示。
3.1.3输入参数范围设置两个输入参数范围如下图所示:3.1.4优化方法(1)是否保留工况点求解数据(2)目标驱动的优化方法•Screening•MOGA•NLPQL•MISQP•Adaptive Single-Objective•Adaptive Multiple-Objective(3)设置工况数量,最小6个(4)设置残差结果残差设置:1e-6(5)设置候选工况数残差达不到要求,增加候选节点继续优化计算。
3.1.5求解开始求解显示当前求解工况仿真各个节点状态显示计算候选工况3.1.6优化完毕3.1.6.1 输入参数变化曲线显示两个输入参数变化曲线3.1.6.2 工况数据列表3.1.6.3收敛判断描述优化目标,优化算法,是否收敛,最优工况等,类似于设置总结3.1.6.4 结果设置参考点,计算工况残差,优化目标结果满足1e-6标准,即可认为收敛。
工况DP7为参考点,DP11残差为0,则最优点为DP7。
工况结果分布散点图3.1.6.5 输入输出分布算例:parameter_correlation.wbpj3.2.1参数设置(1)是否保留工况点数据DX计算完成后是否保留相关数据(2)失败工况管理(failed design points management)尝试计算次数(Number of retries):失败后重新尝试计算的次数计算延迟时间(Retry delay):两次重新计算之间要经过多少时间。
Workbench教程之运动学分析
北京索为高科系统技术有限公司雒海涛
一、导入模型
添加运动分析模块
导入几何模型
几何模型下载请到/imea/html/download.htm
导入后如下图所示
选用默认的stell材料
双击进入mechenical设置部件为刚性体。
三、设定求解参数
四、添加运动副
添加圆柱副
选择立柱圆柱面和吊锤内孔面生成圆柱副
添加固定副,将立柱固定到地上去
将连个吊耳侧面固定到地上
一共有四个运动副
五、添加弹簧
记得选择body to body 添加连个弹簧后如下
六、添加重力加速度
选择-y方向
七、设置求解参数
因为整个系统有一个自由度沿着y向运动。
添加探测器测量吊锤的加速度
吊锤y向加速度
测量吊锤冲击力
测量弹簧跟吊耳之间的力
八、求解及查看结果位移曲线
加速度曲线
讨论:运动学仿真求解速度,workbench比adams慢的太多。