有关二次函数的几个恒成立问题
- 格式:ppt
- 大小:258.00 KB
- 文档页数:10
二次函数恒成立问题的方法二次函数恒成立问题是指对于任意实数x,都存在一个正实数a和正整数b,使得以下的二次函数f(x)满足以下条件:1. f(a) = 02. f(b) = 03. f(x)在区间[a,b]上连续。
下面介绍几种解决二次函数恒成立问题的方法:方法一:利用函数图像如果我们能够画出二次函数f(x)的图像,那么我们可以通过观察图像来确定当x取何值时,函数f(x)恒成立。
例如,我们可以使用抛物线的图像来确定当x 取何值时,函数f(x)恒成立。
具体而言,我们可以通过观察图像来确定二次函数f(x)在区间[a,b]上的取值,并检查是否满足条件1、2、3。
方法二:利用配方和边界条件我们可以使用二次函数的配方来解决这个问题。
设二次函数f(x)的顶点坐标为c(c<0),则有f(x) = (x-c)(x-c-1)。
我们可以使用这个配方来检查当x取何值时,函数f(x)是否恒成立。
具体而言,我们可以通过观察图像来确定当x取何值时,函数f(x)恒成立。
例如,我们可以使用抛物线的图像来确定当x取何值时,函数f(x)恒成立。
方法三:利用函数性质我们还可以通过函数的性质来解决这个问题。
例如,我们可以利用二次函数的对称性来检查当x取何值时,函数f(x)是否恒成立。
具体而言,我们可以通过观察图像来确定当x取何值时,函数f(x)恒成立。
例如,我们可以使用抛物线的图像来确定当x取何值时,函数f(x)恒成立。
方法四:利用数学软件如果我们想要更加高效地解决二次函数恒成立问题,可以使用数学软件。
例如,我们可以使用MATLAB或其他数学软件来检查二次函数f(x)是否满足条件1、2、3。
通过使用软件,我们可以快速地画出函数图像,并检查函数的取值是否满足条件。
以上就是几种解决二次函数恒成立问题的方法,这些方法各有优缺点,我们可以根据具体情况选择合适的方法来解决该问题。
一元二次不等式恒成立与能成立问题5大题型不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
一、一元二次不等式在实数集上的恒成立1、不等式对任意实数恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a 2、不等式对任意实数恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a 【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数的值域为,则恒成立⇒,即;恒成立⇒,即.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.2、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“x ∃∈R ,使()24110x a x +-+≤”是假命题,则实数a 的取值范围是()A .(,3)-∞-B .()5,3-C .(5,)+∞D .(3,5)-【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式0k x->恒成立,则实数k 的取值范围是_____________.【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式()2216(4)10ax a x ----≥的解集为∅,则实数a 的取值范围为_________.【题型2一元二次不等式在某区间上的恒成立问题】【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式2(13)20ax a x +-+≥的解集为A ,设{1,1}B =-,B A ⊆,则实数a 的取值范围为()A .3124a -≤≤B .1342a -≤≤C .14a -≤D .32a ≥【变式2-2】(2022秋·河南·高三期末)已知0a >,b ∈R ,若0x >时,关于x 的不等式()()2250ax x bx -+-≥恒成立,则4b a+的最小值为()A .2B .25C .43D .32【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数()2f x ax x a =++,不等式()5f x <的解集为3—12⎛⎫⎪⎝⎭,.(1)求a 的值;(2)若()f x mx >在(]0,5x ∈上恒成立,求m 的取值范围.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数()f x 满足()21f =-,()11f -=-,且()f x 的最大值是8.(1)试确定该二次函数的解析式;(2)()2f x x k >+在区间[]3,1-上恒成立,试求k 的取值范围.【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式21634x ax x a -≥--对任意[]2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞C .[]8,6-D .(]0,3【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【变式3-3】(2023·全国·高三专题练习)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数()21f x mx mx =--.(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为()A .(),2-∞B .(]13,0,32∞⎛⎫-⋃ ⎪⎝⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .(),1-∞【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式()()224210ax a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【变式4-2】(2023·全国·高三专题练习)若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____.【变式4-3】(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式2620x x a -+->在区间[]0,5内有解,则实数a 的取值范围是().A .()2,+∞B .(),5-∞C .(),3-∞-D .(),2-∞【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是()A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭,C .)3+∞,D .127⎛⎫+∞ ⎪⎝⎭,【变式5-2】(2022·全国·高三专题练习)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为()A .37a ≥B .13a ≥C .12a ≥D .13a ≤【变式5-3】(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.【变式5-4】(2023·全国·高三专题练习)已知命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题,则实数a 的取值范围是______.【变式5-5】(2022·全国·高三专题练习)设()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()()24f x g x mx +=-.若()()220f x x g x -+≥在()0,x ∈+∞上有解,则实数m 的取值范围是______.(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A .m>2B .0m <C .1m <D .m 1≥2.(2022秋·北京大兴·高三统考期中)若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A .1m <B .1m £C .1m >D .1m ≥3.(2022秋·全国·高三校联考阶段练习)设m ∈R ,则“34m >-”是“不等式210x x m -++≥在R 上恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2022秋·宁夏银川·高三校考期中)已知命题p :R x ∀∈,20x x a -+>,若p ⌝是假命题,则实数a 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .11,42⎛⎫ ⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭5.(2022秋·河南·高三校联考阶段练习)设函数()22f x ax ax =-,命题“[]0,1x ∃∈,()3f x a ≤-+”是假命题,则实数a 的取值范围为()A .(),3-∞B .()3,+∞C .24,7⎛⎫+∞ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭6.(2023·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数()21f x mx mx =--,若对于任意的{|13}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为()A .57m <B .507m ≤<C .0m <或507m <<D .0m ≤8.(2022秋·湖南邵阳·高三统考期中)设函数22()223f x x ax a a =++-+,若对于任意的x R ∈,不等式()()0f f x ≥恒成立,则实数a 的取值范围是()A .32a ≥B .2a ≤C .322a <≤D .32a ≤9.(2022秋·辽宁鞍山·高三校联考期中)设R a ∈,若关于x 的不等式210x ax -+≥在12x ≤≤上有解,则()A .2a ≤B .2a ≥C .52a ≤D .52a ≥10.(2023·全国·高三专题练习)已知命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题,则实数a 的取值范围()A .(],0-∞B .[]0,4C .[4,+∞)D .(],0-∞[)4⋃+∞,11.(2022·全国·高三专题练习)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是()A .{}14a a -≤≤B .{}14a a -<<C .{4a a ≥或}1a ≤-D .{}41a a -≤≤12.(2022·全国·高三专题练习)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为()A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎫-∞-⎪⎝⎭13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x ,使得关于x 的不等式2430ax x a -+-<成立,则实数a 的取值范围是______.14.(2021·全国·高三专题练习)已知函数2,0()20x x x f x x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x 使不等式()24(4)0kx kx ---<成立”是假命题,则实数k 的取值范围是____________.16.(2022秋·江苏连云港·高三校考开学考试)2210,0ax x x -+≥∀>恒成立,则实数a 的取值范围是_________.17.(2021·全国·高三专题练习)若不等式22x mx ->对满足1m ≤的一切实数m 都成立,则x 的取值范围是___________18.(2023·全国·高三专题练习)若不等式22210x t at -+-+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,则实数t 的取值范围是__________.参考答案【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-【答案】A【解析】由不等式210x ax -+>对R x ∀∈恒成立,得Δ0<,即()240a --<,解得22a -<<,从选项可知02a <<是22a -<<的充分不必要条件,故选:A.【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“x ∃∈R ,使()24110x a x +-+≤”是假命题,则实数a 的取值范围是()A .(,3)-∞-B .()5,3-C .(5,)+∞D .(3,5)-【答案】D【解析】因为命题“R x ∃∈,使()24110x a x +-+≤”是假命题,所以,命题“R x ∀∈,()24110x a x +-+>”是真命题,所以,2Δ(1)160a =--<,解得35a -<<,故实数a 的取值范围是(3,5)-.故选:D.【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【答案】1m ≤-或0m >【解析】若命题是真命题:当0m =时,22410mx mx m ++-<,可化为10-<,成立;当0m ≠时,()20Δ16810m m m m <⎧⎨=--<⎩,解得10m -<<综合得当10m -<≤时,关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立是真命题,若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题则1m ≤-或0m >【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式0x kk x->恒成立,则实数k 的取值范围是_____________.【答案】[0,4)0k x->,即0(0)x x k x -+>>,令0t x =>,则20(0)t kt k t -+>>恒成立.所以202000kk k ⎧≤⎪⎨⎪-⨯+≥⎩或()202Δ40k k k ⎧>⎪⎨⎪=--<⎩,解得04k ≤<,故实数k 的取值范围是[0,4).【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式()2216(4)10ax a x ----≥的解集为∅,则实数a 的取值范围为_________.【答案】1245a a ⎧⎫-<≤⎨⎬⎩⎭∣【解析】当4a =时,不等式可化为10-≥,无解,满足题意;当4a =-时,不等式化为810x -≥,解得18x ≥,不符合题意,舍去;当4a ≠±时,要使得不等式()2216(4)10a x a x ----≥的解集为∅,则()()222160,44160,a a a ⎧-<⎪⎨∆=-+-<⎪⎩解得1245a -<<.综上,实数a 的取值范围是1245a a ⎧⎫-<≤⎨⎬⎩⎭∣.【题型2一元二次不等式在某区间上的恒成立问题】【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【答案】2t ≤-【解析】由题设,22b =且32c -=-,可得4,6b c ==,所以22420x x t -+++≤在10x -≤≤上恒成立,而222)4(f x x x t +=-++在(,1)-∞上递增,故只需2(0)0f t +≤=即可,所以2t ≤-.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式2(13)20ax a x +-+≥的解集为A ,设{1,1}B =-,B A ⊆,则实数a 的取值范围为()A .3124a -≤≤B .1342a -≤≤C .14a -≤D .32a ≥【答案】B【解析】由题意,23)(20x a x x ++≥-在{1,1}B =-上恒成立,所以410320a a +≥⎧⎨-≥⎩,可得1342a -≤≤.故选:B【变式2-2】(2022秋·河南·高三期末)已知0a >,b ∈R ,若0x >时,关于x 的不等式()()2250ax x bx -+-≥恒成立,则4b a+的最小值为()A .2B .25C .43D .32【答案】B【解析】设2y ax =-(0x >),25y x bx =+-(0x >),因为0a >,所以当20x a<<时,20y ax =-<;当2x a=时,20y ax =-=;当2x a >时,20y ax =->;由不等式()2(2)50ax x bx -+-≥恒成立,得:22050ax x bx -≤⎧⎨+-≤⎩或22050ax x bx -≥⎧⎨+-≥⎩,即当20x a<≤时,250x bx +-≤恒成立,当2x a≥时,250x bx +-≥恒成立,所以当2x a =时,250y x bx =+-=,则20425b a a +-=,即225a b a =-,则当0a >时,4524555222222a a a b a a a a a+=-+=+≥⨯=当且仅当522a a =,即55a =时等号成立,所以4b a+的最小值为25故选:B.【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数()2f x ax x a =++,不等式()5f x <的解集为3—12⎛⎫⎪⎝⎭,.(1)求a 的值;(2)若()f x mx >在(]0,5x ∈上恒成立,求m 的取值范围.【答案】(1)2a =;(2){|5}m m <.【解析】(1)()25f x ax x a =++<的解集为312⎛⎫-⎪⎝⎭,即250ax x a ++-<的解集为312,⎛⎫-⎪⎝⎭,031123512a a a a >⎧⎪⎪-+=-∴⎨⎪-⎪-⨯=⎩,解得2a =;(2)由(Ⅰ)可得()222f x x x =++,()f x mx > 在(]05x ∈,上恒成立,即()22120x m x +-+>恒成立,令()()2212h x x m x =+-+,则()0h x >在(]05,上恒成立,有()104020m h -⎧≤⎪⎨⎪=>⎩或()2105412240m m -⎧<≤⎪⎨⎪--⨯⨯<⎩或()()154552510m h m -⎧>⎪⎨⎪=+->⎩,解得1m £或15m <<或m ∈∅,综上可得m 的范围为{|5}m m <.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数()f x 满足()21f =-,()11f -=-,且()f x 的最大值是8.(1)试确定该二次函数的解析式;(2)()2f x x k >+在区间[]3,1-上恒成立,试求k 的取值范围.【答案】(1)()2447f x x x =-++;(2)k 的取值范围为(),35∞--.【解析】(1)由(2)(1)f f =-,得21122x -==为二次函数的对称轴,因函数()f x 的最大值为8,所以可设()2182f x a x ⎛⎫=-+ ⎪⎝⎭,又因9(2)814f a =+=-,所以4a =-,因此()2447f x x x =-++.(2)由(1)不等式()2f x x k >+,可化为24472x x x k -++>+,所以2427k x x <-++,因为()2f x x k >+在区间[]3,1-上恒成立,所以2427k x x <-++在区间[]3,1-上恒成立,故()2min 427k x x <-++,其中[]3,1x ∈-,又函数22129427444y x x x ⎛⎫=-++=--+ ⎪⎝⎭,又当3x =-时,35y =-,当1x =时,5y =,所以函数2427y x x =-++在[]3,1-上的最小值为-35,所以35k <-,所以k 的取值范围为(),35∞--.【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式21634x ax x a -≥--对任意[]2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞ C .[]8,6-D .(]0,3【答案】A【解析】由题得不等式2(4)3160x a x x ---+≤对任意[]2,4a ∈-成立,所以22(4)(2)3160(4)43160x x x x x x ⎧----+≤⎨---+≤⎩,即2252400x x x x ⎧--+≤⎨-+≤⎩,解之得3x ≥或8x ≤-.故选:A【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立,令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠,当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】(2023·全国·高三专题练习)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦.【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数()21f x mx mx =--.(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.【答案】(1)6,7⎛⎫-∞ ⎪⎝⎭;(2)()1,2-【解析】(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,即260mx mx m -+-<对于[]2,2x ∈-恒成立,即261m x x <-+对于[]2,2x ∈-恒成立.令()226611324h x x x x ==-+⎛⎫-+⎪⎝⎭,[]2,2x ∈-,则()min 66(2)253744h x h =-==+,故67m <,所以m 的取值范围为6,7⎛⎫-∞ ⎪⎝⎭.(2)对于[]2,2m ∈-,()5f x m <-+恒成立,即215mx mx m --<-+恒成立,故()2160m x x -+-<恒成立,令()()216g m m x x =+--,则()()()()222216022160g x x g x x ⎧-=--+-<⎪⎨=-+-<⎪⎩,解得12x -<<,所以x 的取值范围为()1,2-.【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为()A .(),2-∞B .(]13,0,32∞⎛⎫-⋃ ⎪⎝⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .(),1-∞【答案】C【解析】①当0m =时,不等式化为20x <,解得:0x <,符合题意;②当0m >时,()22y mx m x m =--+为开口方向向上的二次函数,只需()222243440m m m m ∆=--=--+>,即203m <<;③当0m <时,()22y mx m x m =--+为开口方向向下的二次函数,则必存在实数x ,使得()220mx m x m --+<成立;综上所述:实数m 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.故选:C.【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式()()224210ax a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】C【解析】根据题意,分两种情况讨论:①当240a -=时,即2a =±,若2a =时,原不等式为410x -≥,解可得:14x ≥,则不等式的解集为1|4x x ⎧⎫≥⎨⎬⎩⎭,不是空集;若2a =-时,原不等式为10-≥,无解,不符合题意;②当240a -≠时,即2a ≠±,若22(4)(2)10a x a x -++-≥的解集是空集,则有22240Δ(2)4(4)0a a a ⎧-<⎨=++-<⎩,解得625a -<<,则当不等式22(4)(2)10a x a x -++-≥的解集不为空集时,有2a <-或65a ≥且2a ≠,综合可得:实数a 的取值范围为6(,2)[,)5-∞-⋃+∞;故选:C .【变式4-2】(2023·全国·高三专题练习)若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____.【答案】(,1)(4,)-∞+∞ 【解答】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解,则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当a<0时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以a<0,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞ .【变式4-3】(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.【答案】(),1∞-【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当a<0时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <,所以01a <<,综上所述:a 的取值范围是(),1∞-,【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式2620x x a -+->在区间[]0,5内有解,则实数a 的取值范围是().A .()2,+∞B .(),5-∞C .(),3-∞-D .(),2-∞【答案】D【解析】不等式2620x x a -+->在区间[]0,5内有解,仅需2max (62)x x a -+>即可,令2()62f x x x =-+,因为()f x 的对称轴为6321x -=-=⨯,(0)2f =,(5)3f =-,所以由一元二次函数的图像和性质的得2max (62)2x x -+=,所以2a <,故选:D【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是()A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭,C .)3+∞,D .127⎛⎫+∞⎪⎝⎭,【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+,故问题转化为263xm x <+在(]02,上有解,设26()3x g x x =+,则266()33x g x x x x ==++,(]02x ∈,,对于323x x+,当且仅当3(0,2]x =时取等号,则max ()323g x =3m ,故选:A【变式5-2】(2022·全国·高三专题练习)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为()A .37a ≥B .13a ≥C .12a ≥D .13a ≤【答案】C【解析】 命题:{|19}p x x x ∃∈≤≤,使2360x ax -+≤为真命题,即{|19}x x x ∃∈≤≤,使2360x ax -+≤成立,即36a x x≥+能成立设36()f x x x=+,则3636()212f x x x x x=+≥⋅=,当且仅当36x x=,即6x =时,取等号,即min ()12f x =,12a ∴≥,故a 的取值范围是12a ≥.故选:C .【变式5-3】(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.【答案】(),3∞-【解析】将原不等式参数分离可得231x x a x ++<+,设()231x x f x x ++=+,已知存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则()max a f x <,令1t x =+,则()()22113133t t t f x t t t tt -+-+==+-+=-,[]1,2t ∈,由对勾函数知()f x 在3⎡⎣上单调递减,在3,2⎤⎦上单调递增,()311131f =+-=,()3522122f =+-=,所以()()max 13f x f ==,即3a <.【变式5-4】(2023·全国·高三专题练习)已知命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题,则实数a 的取值范围是______.【答案】()2,-+∞【解析】因为命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题则[1,1]x ∃∈-,23>-a x x 有解,设2()3f x x x =-,则2239324()⎛⎫-=-- ⎝⎭=⎪f x x x x ,当[1,1]x ∈-时,()f x 单调递减,所以2()4f x -≤≤,所以2a >-.【变式5-5】(2022·全国·高三专题练习)设()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()()24f x g x mx +=-.若()()220f x x g x -+≥在()0,x ∈+∞上有解,则实数m 的取值范围是______.【答案】4m ≥【解析】由题设,()()22240f x x g x mx x -+=--≥,即240x mx -+≤在()0,x ∈+∞上有解,对于24y x mx =-+,开口向上且对称轴为2mx =,216m ∆=-,0|4x y ==,∴002m ∆≥⎧⎪⎨>⎪⎩,可得4m ≥.(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A .m>2B .0m <C .1m <D .m 1≥【答案】A【解析】∵命题p 为真命题,∴不等式220x x m -+>在R 上恒成立,∴Δ440m =-<,解得1m >,对于A ,m>2⇒1m >,∴m>2是1m >的充分条件,∴m>2是命题p 为真命题的充分条件,选项A 正确;对于B ,0m <¿1m >,∴0m <不是1m >的充分条件,∴0m <不是命题p 为真命题的充分条件,选项B 不正确;对于C ,1m <¿1m >,∴1m <不是1m >的充分条件,∴1m <不是命题p 为真命题的充分条件,选项C 不正确对于D ,m 1≥¿1m >,∴m 1≥不是1m >的充分条件,∴m 1≥不是命题p 为真命题的充分条件,选项D 不正确.故选:A.2.(2022秋·北京大兴·高三统考期中)若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A .1m <B .1m £C .1m >D .1m ≥【答案】B【解析】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.故选:B.3.(2022秋·全国·高三校联考阶段练习)设m ∈R ,则“34m >-”是“不等式210x x m -++≥在R 上恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由不等式210x x m -++≥在R 上恒成立,得()()2Δ1410m =--+≤,解得34m ≥-.所以“34m >-”是“不等式210x x m -++≥在R 上恒成立”的充分不必要条件.故选:A4.(2022秋·宁夏银川·高三校考期中)已知命题p :R x ∀∈,20x x a -+>,若p ⌝是假命题,则实数a 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .11,42⎛⎫ ⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】已知命题:R p x ∀∈,20x x a -+>,若p ⌝是假命题,则不等式20x x a -+>在R 上恒成立,140a ∴∆=-<,解得14a >.因此,实数a 的取值范围是1,4⎛⎫+∞ ⎪⎝⎭.故选:C.5.(2022秋·河南·高三校联考阶段练习)设函数()22f x ax ax =-,命题“[]0,1x ∃∈,()3f x a ≤-+”是假命题,则实数a 的取值范围为()A .(),3-∞B .()3,+∞C .24,7⎛⎫+∞ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭【答案】C【解析】因为命题“[]()0,1,3x f x a ∃∈≤-+”是假命题,所以[]()0,1,3x f x a ∀∈>-+是真命题,又()3f x a >-+可化为223ax ax a ->-+,即()2213a x x -+>,当[]0,1x ∈时,272128x x ⎡⎤+∈⎢⎣-⎥⎦,所以2321m x x >-+在[]0,1x ∈上恒成立,所以2max321m x x ⎛⎫->⎪+⎝⎭其中,[]0,1x ∈,当14x =时221x x -+有最小值为78,此时2321x x -+有最大值为247,所以247m >,故实数m 的取值范围是24,7⎛⎫+∞ ⎪⎝⎭,故选:C6.(2023·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞,故选:A7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数()21f x mx mx =--,若对于任意的{|13}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为()A .57m <B .507m ≤<C .0m <或507m <<D .0m ≤【答案】A【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,对称轴为12x =.当0m =时,50-<恒成立,当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <.当0m >时,有()g x 开口向上且在[]1,3上单调递增∴在[]1,3上()()max 3750g x g m ==-<,∴507m <<综上,实数m 的取值范围为57m <,故选:A.8.(2022秋·湖南邵阳·高三统考期中)设函数22()223f x x ax a a =++-+,若对于任意的x R ∈,不等式()()0f f x ≥恒成立,则实数a 的取值范围是()A .32a ≥B .2a ≤C .322a <≤D .32a ≤【答案】B【解析】∵222()223()23f x x ax a a x a a =++-+=+-+,即开口向上且[)()23,f x a ∈-++∞,由()()0f f x ≥恒成立,即()0f x ≥在[)23,a -++∞上恒成立,∴当230a -+≥时,即32a ≤,由二次函数的性质,()0f x ≥显然成立;当32a >时,()y f x =有两个零点,则只需满足23(23)0a a f a -≤-+⎧⎨-+≥⎩,解得2a ≤,故322a <≤;综上,a 的取值范围是2a ≤.故选:B9.(2022秋·辽宁鞍山·高三校联考期中)设R a ∈,若关于x 的不等式210x ax -+≥在12x ≤≤上有解,则()A .2a ≤B .2a ≥C .52a ≤D .52a ≥【答案】C【解析】由210x ax -+≥在12x ≤≤上有解,得21x a x+≥在12x ≤≤上有解,则2max1x a x ⎛⎫+≤ ⎪⎝⎭,由于211x x x x +=+,而1+x x在12x ≤≤单调递增,故当2x =时,1+x x 取最大值为52,故52a ≤,故选:C10.(2023·全国·高三专题练习)已知命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题,则实数a 的取值范围()A .(],0-∞B .[]0,4C .[4,+∞)D .(],0-∞[)4⋃+∞,【答案】D【解析】由题意,命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题故221(2)44404a a a ∆=--⨯⨯=-≥,解得4a ≥或0a ≤.则实数a 的取值范围是(],0-∞[)4⋃+∞,故选:D.11.(2022·全国·高三专题练习)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是()A .{}14a a -≤≤B .{}14a a -<<C .{4a a ≥或}1a ≤-D .{}41a a -≤≤【答案】A【解析】因为关于x 的不等式2243x x a a -+≥-在R 上有解,即22430x x a a -+-≤在R 上有解,只需2243y x x a a =-+-的图象与x 轴有公共点,所以()()224430a a ∆=--⨯-≥,即2340a a --≤,所以()()410a a -+≤,解得:14a -≤≤,所以实数a 的取值范围是{}14a a -≤≤,故选:A.12.(2022·全国·高三专题练习)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为()A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎫-∞-⎪⎝⎭【答案】A【解析】关于x 的不等式220x ax +->在区间[1,5]上有解,22ax x ∴>-在[1x ∈,5]上有解,即2a x x>-在[1x ∈,5]上成立;设函数2()f x x x=-,[1x ∈,5],()f x ∴在[1x ∈,5]上是单调减函数,又()1211f =-=,()2235555f =-=-所以()f x 的值域为23[5-,1],要2a x x>-在[1x ∈,5]上有解,则235a >-,即实数a 的取值范围为23,5⎛⎫-+∞ ⎪⎝⎭.故选:A .13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x ,使得关于x 的不等式2430ax x a -+-<成立,则实数a 的取值范围是______.【答案】4a <【解析】3a <时,若0x =,则不等式为30a -<,不等式成立,满足题意,3a ≥时,在在x 使得不等式2430ax x a -+-<成立,则164(3)0a a ∆=-->,∴34a ≤<.综上,4a <.14.(2021·全国·高三专题练习)已知函数2,0()20x x x f x x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________.【答案】(,3][1,)-∞-⋃-+∞【解析】由题意,当0x =时,不等式()1f x ax ≤-可化为01≤-显然不成立;当0x <时,不等式()1f x ax ≤-可化为21x x ax -+≤,所以11a x x≤+-,又当0x <时,11()2x x x x ⎡⎤⎛⎫+=--+-≤- ⎪⎢⎥⎝⎭⎣⎦,当且仅当1x x -=-,即=1x -时,等号成立;当0x >时,不等式()1f x ax ≤-可化为21x ax ≤,即21111a x x x ⎫≥=-≥-⎪⎭;因为存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,所以,只需213a ≤--=-或1a ≥-.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x 使不等式()24(4)0kx kx ---<成立”是假命题,则实数k 的取值范围是____________.【答案】[1,4]【解析】设不等式()24(4)0kx k x ---<的解集为A ,当0k =时,不等式()24(4)0kx k x ---<化为>4x ,存在整数x 使不等式成立,所以此时不满足题意,所以0k ≠;当0k >时,原不等式化为4[()](4)0x k x k-+-<,因为4424k k kk+≥⋅,当且仅当4,k k =即2k =时取等号,所以4{|4}A x x k k =<<+,要使命题:“存在整数x 使不等式()24(4)0kx k x ---<成立”是假命题,则需445k k ≤+≤,解得14k ≤≤;当0k <时,原不等式化为4[()](4)0x k x k-+->,而()44424k k k k k k ⎛⎫⎛⎫+=--+≤--⋅=- ⎪ ⎪--⎝⎭⎝⎭,当且仅当4,k k -=-即2k =-时取等号,所以()4,4,A k k ⎛⎫=-∞+⋃+∞ ⎪⎝⎭,所以存在整数x 使不等式()24(4)0kx kx ---<成立,所以0k <不合题意.综上可知,实数k 的取值范围是[1,4].16.(2022秋·江苏连云港·高三校考开学考试)2210,0ax x x -+≥∀>恒成立,则实数a 的取值范围是_________.【答案】[1)+∞,【解析】由2210,0axx x -+≥∀>恒成立,可得,221a x x ≥-对0x ∀>恒成立,令221y x x =-,则2111y x ⎛⎫=-- ⎪⎝⎭,10x ⎛⎫> ⎪⎝⎭,当11x=时,max 1y =,所以max 1a y ≥=.17.(2021·全国·高三专题练习)若不等式22x mx ->对满足1m ≤的一切实数m 都成立,则x 的取值范围是___________【答案】<2x -或2x >【解析】因为22x mx ->,所以220mx x -+<令()22f m mx x =-+,即()0f m <在1m ≤恒成立,即11m -≤≤时()0f m <恒成立,所以()()1010f f ⎧<⎪⎨-<⎪⎩,即222020x x x x ⎧-+<⎨--+<⎩,解220x x -+<得2x >或1x <-;解220x x --+<得1x >或<2x -,所以原不等式组的解集为()(),22,x ∈-∞-⋃+∞18.(2023·全国·高三专题练习)若不等式22210x t at -+-+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,则实数t 的取值范围是__________.【答案】(,2]{0}[2,)-∞-+∞U U 【解析】由题意得2221t at x -+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,所以2211t at -+≥对任意[1,1]a ∈-恒成立,即220t at -≥对[1,1]a ∈-恒成立,令22()22g a t at ta t =-=-+,则()g a 是关于a 的一次函数,所以只需(1)0(1)0g g ≥⎧⎨-≥⎩,即222020t t t t ⎧-≥⎨+≥⎩,解得2t ≥或2t ≤-或0=t ,所以实数t 的取值范围是(,2]{0}[2,)-∞-+∞U U .。
1 / 13二次函数型 的恒成立与有解题型归纳一、知识点形如()()()2g x a f x bf x c =++⎡⎤⎣⎦的函数称为二次型函数,与二次型函数有关的恒成立或有解问题一般利用二次函数的性质求解.二、例题赏析(一)一元二次不等式在R 上的恒成立或有解问题 对于二次函数)0(0)(2≠>++=a c bx ax x f 有:1.R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2.R x x f ∈<在0)(上恒成立00<∆<⇔且a . 基本题型:【例】 若不等式2kx 2+kx −38<0对一切实数x 都成立,则实数k 的取值范围为 A .(−3,0) B .(−3,0]C .(−∞,0]D .(−∞,−3)∪[0,+∞)【详解】当k =0时,原不等式可化为−38<0,对x ∈R 恒成立;当k ≠0时,原不等式恒成立,需{2k <0Δ=k 2−4×2k ×(−38)<0 ,解得k ∈(−3,0),综上k ∈(−3,0].故选B.【变式训练】 若关于x 的不等式221)(1)201k x k x x x -+-+>++(的解集为R ,则k 的范围为____________. 【详解】因为22131024⎛⎫++=++> ⎪⎝⎭x x x ,所以221)(1)201k x k x x x -+-+>++(等价于21)(1)20(-+-+>k x k x 恒成立,当1k =时,20>成立,当1k ≠时,则()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩ ,解得19k << , 综上:19k ≤<.故答案为:19k ≤<.2 / 13【变式训练】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)【解析】∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有200k <⎧⎨∆<⎩,解得-3<k <0. 【变式训练】若函数22log (28)y kx kx =-+的定义域为一切实数,则实数k 的取值范围为____________. 【详解】因为函数22log (28)y kx kx =-+的定义域为一切R ,等价于228kx kx -+>0,对任意的实数x 恒成立.当0k =时,80>,符合条件.当0k ≠时,2084320k k k k >⎧⇒<<⎨∆=-<⎩.综上08k ≤<. (二) 一元二次不等式在给定区间上的恒成立或有解问题 设(1)当时,上恒成立 上恒成立(2)当时,上恒成立上恒成立 类型一:构造二次函数分类讨论【例】设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 【分析】本题可转化为二次函数在闭区间上的最值,也可以通过分类参数求解. 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:2()(0).f x ax bx c a =++≠0>a ],[0)(βα∈>x x f 在,222()00()0.b b ba a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在()0,()0.f f αβ<⎧⇔⎨<⎩0<a ],[0)(βα∈>x x f 在()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在,222()00()0.b b ba aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或3 / 13令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. (1)当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,所以0<m <67;(2)当m =0时,-6<0恒成立;(3)当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述,m 的取值范围是{m |m <67}.【变式训练】已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.【解析】不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解,即00m <⎧⎨∆<⎩,不等式组的解集为空集,即m 无解.综上可知,不存在这样的m . 类型二:分离参数法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.利用分离参数法来确定不等式(,为实参数)恒成立中参数的取值范围的基本步骤:(1)将参数与变量分离,即化为(或)恒成立的形式; (2)求在上的最大(或最小)值;(3)解不等式(或) ,得的取值范围.【例】 已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为______. 【详解】()()3221143432f x x mx x f x x mx '=-+-∴=-+Q ,因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,所以240x mx -+≥在区间[]1,2上恒成立,即min 4(),[1,2]m x x x≤+∈,因为(),0f x λ≥D x ∈λλ()()g f x λ≥()()g f x λ≤()f x x D ∈()max ()g f x λ≥()()min g f x λ≤λ4 / 134y x x =+≥,当且仅当2x =时取等号,所以4y x x =+最小值为4,即4m ≤,故答案为:4m ≤ 【变式训练】已知()22xxf x -=-,若不等式()()230f x ax a f -++>对任意实数[]2,3x ∈恒成立,则实数a 的取值范围是________. 【详解】1()2222xxx x f x -=-=-,因为2xy =与12xy =-均为实数集上的增函数, 所以()f x 为实数集上的增函数,又()22()x xf x f x --=-=-,所以()f x 为实数集上的奇函数,由不等式2()(3)0f x ax a f -++>对任意实数[2,3]x ∈恒成立, 得2()(3)(3)f x ax a f f -+>-=-对任意实数[2,3]x ∈恒成立, 则23x ax a -+>-,即2(1)3x a x -<+在[2,3]x ∈时恒成立,得223(1)2(1)44(1)2111x x x a x x x x +-+-+<==-++---,因为函数4(1)21u x x =-++-在[2,3]上单调递减, 所以4(1)21u x x =-++-的最小值为2226++=,所以6a <, 所以a 的取值范围是(,6)-∞,故答案为:(,6)-∞. 类型三:主参换位——反客为主法【例】(2020·上海中学高一期中)已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________. 【答案】3(3,)2-【解析】因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0(1)0≤-⎨≤⎧⎩f f ,即2242(2)21042(2)210----+≤+---+≤⎧⎨⎩p p p p p p ,整理得222390210+-≥-⎧⎩-⎨≥p p p p ,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.5 / 13【变式训练】已知函数若对于任意,都有成立,则实数的取值范围是 .【解析】由题意可得()0f x <对于[,1]x m m ∈+上恒成立,即22()210(1)230f m m f m m m ⎧=-<⎨+=+<⎩,解得0m <<. 【变式训练】对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 【解析】由f(x)=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4, 则原问题转化为关于m 的一次函数问题.由题意知在[-1,1]上,g(m)的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x<1或x>3. 故当x 的取值范围是(-∞,1)∴(3,+∞)时,对任意的m∴[-1,1],函数f(x)的值恒大于零. (三) ()()20a f x bf x c ++>⎡⎤⎣⎦ 恒成立问题形如()()20a f x bf x c ++>⎡⎤⎣⎦的不等式恒成立问题,可设()t f x =,转化为一元二次不等式,但要注意()t f x =的范围.【例】(2019·湖南茶陵三中高一期中)函数12()2x x m f x n+-=+是R 上的奇函数,m 、n 是常数.(1)求m ,n 的值;(2)判断()f x 的单调性并证明; (3)不等式()()33920xxx f k f ⋅+--<对任意R x ∈恒成立,求实数k 的取值范围.【分析】(1)依题意()f x 时R 上的奇函数,则采用特殊值法,(0)0(1)(1)f f f =⎧⎨-=-⎩即可求出参数的值;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可; (3)根据函数的奇偶性和单调性将函数不等式转化为自变量的不等式,即()23(1)320xx k -+⋅+>对任意R x ∈恒成立,令3(0)x t t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,根据二次函数的性质分析可得;,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m6 / 13【详解】(1)∴12()2x x mf x n +-=+是R 上的奇函数,∴(0)0(1)(1)f f f =⎧⎨-=-⎩∴12m n =⎧⎨=⎩ ∴12111()22221x x xf x +-==-++. (2)()f x 在R 上递增证明:设12,x x R ∈,且12x x <,则()()()()121212121111222212212121x x x x x x f x f x --=--+=++++,∴12x x <∴12220x x -<又1210x +>,2210x +>,∴()()120f x f x -<,即()()12f x f x <,∴()f x 是R 上的增函数.(3)由题意得:()()()3392932xxx x x f k f f ⋅<---=-+对任意x ∈R 恒成立又()f x 是R 上的增函数,∴3932x x x k ⋅<-+即()23(1)320xx k -+⋅+>对任意x ∈R 恒成立,令3(0)xt t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,对称轴为12k t +=, (1)当102k +≤即1k ≤-时,()g t 在(0,)+∞为增函数,∴()(0)20g t g >=>成立,∴1k ≤-符合, (2)当102k +>即1k >-时,()g t 在10,2k +⎛⎫ ⎪⎝⎭为减,1,2k +⎛⎫+∞⎪⎝⎭为增, ∴22min 1(1)(1)()20242k k k g t g +++⎛⎫==-+> ⎪⎝⎭,解得11k -<<,∴11k -<<. 综上实数k的取值范围为1k <.【变式训练】若关于x 的不等式cos2sin 0x x a ++<恒成立,则实数a 的取值范围是 . 【分析】把不等式转化为关于sin x 的一元二次不等式.【解析】2211cos 2sin 12sin sin 2sin 48x x a x x a x a ⎛⎫++=-++=--++ ⎪⎝⎭,当1sin 4x =时cos2sin x x a ++取得最小值18a +,所以实数a 的取值范围是1,8⎛⎫-∞- ⎪⎝⎭.7 / 13【变式训练】设b ∈R ,若函数f (x )=4x −2x+1+b 在[−1,1]上的最大值是3,则其在[−1,1]上的最小值是( )A .2B .1C .0D .−1【解析】f (x )=4x −2x+1+b =(2x )2−2⋅2x +b.设2x =t,则f (x )=t 2−2t +b =(t −1)2+b −1. 因为x ∈[−1,1],所以t ∈[12,2].当t =1时,f (x )min =f (1)=b −1;当t =2时,f (x )max =3,即1+b −1=3,b =3.于是f (x )min =2.故选A. (四)、其它函数:对于二次函数)0(0)(2≠>++=a c bx ax x f 有: (1)()()max x f a x f a ≥⇔≥恒成立; (2)()()min x f a x f a ≤⇔≤恒成立;(3)恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0).【例】 不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为_________. 【分析】根据二次不等式的恒成立问题,先求解不等式左边的最小值,再求解二次不等式即可.【详解】因为()2225144x x x -+=-+≥,故243a a ≥-恒成立.即()()2340140a a a a --≤⇒+-≤,解得14a -≤≤.实数a 的取值范围为[]1,4-.故答案为:[]1,4-【例】(2019·甘肃高二期末(理))若关于x 的不等式24x x m -≥对任意[0,1]x ∈恒成立,则实数m 的取值范围是 .【解析】设24,24y x x y x '=-=-,令0y '=,得 2.x =∴24y x x =-在(),2-∞上是减函数,即在[]0,1x ∈上也是减函数,2min 143,3y m ∴=-=-∴≤-.【变式训练】【2019天津市和平区高三第二次质量调查】若不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,则实数a 的最大值为________.【解析】设f(x)=−x 2+2x +3,不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,只需满足f(x)max ≤()0f x >⇔min ()0f x >()f x ()0f x >⇔()f x ()0f x <⇔max ()0f x <()f x ()0f x <⇔()f x8 / 1321−3a ,即可.f(x)=−x 2+2x +3=−(x −1)2+4⇒f(x)max =4,所以有 4≤21−3a ⇒a ≤−13,因此实数a 的最大值为−13.三、跟踪训练1、(2020·福建厦门高二月考(理))已知函数3211()4332f x x mx x =-+-在区间[]1,2上是增函数,实数m 的取值范围为( )A .45m ≤≤B .24m ≤≤C .4m <D .4m ≤【分析】求出3211()4332f x x mx x =-+-导函数,利用函数的单调性,推出4m x x ≤+不等式,利用基本不等式求解函数的最值,即可求得答案. 【详解】Q 函数3211()4332f x x mx x =-+-,∴2()4f x x mx '=-+, Q 函数3211()4332f x x mx x =-+-在区间上[1,2]是增函数,可得240x mx -+≥,在区间上[1,2]恒成立, 即:4,m x x ≤+在区间上[1,2]恒成立,Q 44x x +≥=,当且仅当2x =时取等号,可得4m ≤. 2.己知f(x)=x 2+2x +1+a ,∀x ∈R ,f(f(x))≥0恒成立,则实数a 的取值范围为( ) A .[√5−12,+∞] B .[√5−32,+∞] C .[−1,+∞) D .[0,+∞)【解析】设t =f(x)=(x +1)2+a ≥a ,∴f(t)≥0对任意t ≥a 恒成立,即(t +1)2+a ≥0对任意t ∈[a,+∞)都成立,当a ≤−1时f(t)min =f(−1)=a ,则a +a ≥0即a ≥0与讨论a ≤−1矛盾,当a >−1时,f(t)min =f(a)=a 2+3a +1,则a 2+3a +1≥0,解得a ≥√5−32,故选B .3、若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是( ) A .(],1-∞ B .(),1-∞ C .(],2-∞ D .(),2-∞【解析】【分析】求()2f'x 6x 6mx 6=-+,根据题意可知()f'x 0≥在()1,∞+上恒成立,可设()2g x 6x 6mx 6=-+,法一:讨论V 的取值,从而判断()g x 0≥是否在()1,∞+上恒成立:0≤V 时,容易求出2m 2-≤≤,显然满足()g x 0≥;0V >时,得到关于m 的不等式组,这样求出m 的范围,和前面求出的m 范围求并集即可,法二:分离参数,求出m 的范围即可.9 / 13【详解】()2f'x 6x 6mx 6=-+;由已知条件知()x 1,∞∈+时,()f'x 0≥恒成立;设()2g x 6x 6mx 6=-+,则()g x 0≥在()1,∞+上恒成立;法一:()1若()236m 40=-≤V ,即2m 2-≤≤,满足()g x 0≥在()1,∞+上恒成立;()2若()236m 40=->V ,即m 2<-,或m 2>,则需()m 121660g m ⎧<⎪⎨⎪=-≥⎩解得m 2≤; m 2∴<-,∴综上得m 2≤, ∴实数m 的取值范围是(],2∞-;法二:问题转化为1m x x ≤+在()1,∞+恒成立,而函数1y x 2x=+≥,故m 2≤;故选C . 4、已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .-1<b <0 B .b >2 C .b <-1或b >2D .不能确定【解析】由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a2=1,故a =2.,由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.5.已知f (x )=m (x −2m )(x +m +3),g (x )=4x −2,若对任意x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是( )A .(−72,+∞) B .(−∞,14) C .(−72,0) D .(0,14) 【解析】∴g (x )=4x ﹣2,当x<12时,g (x )<0恒成立,当x ≥12时,g (x )≥0,又∴∴x ∴R ,f (x )<0或g (x )<0,∴f (x )=m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立,即m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立, 则二次函数y =m (x ﹣2m )(x +m +3)图象开口只能向下,且与x 轴交点都在(12,0)的左侧,10 / 13∴{ m <0−m −3<122m <12 ,即{m <0m >−72m <14 ,解得−72<m <0,∴实数m 的取值范围是:(−72,0).故选C . 6.【河南省郑州市2019年高三第二次质量检测】已知平面向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b ⃑⃑|=√7,若对于任意实数k ,不等式|ka ⃑+tb ⃑⃑|>1恒成立,则实数t 的取值范围是( ) A .(−∞,−√3)∪(√3,+∞) B .(−∞,−√33)∪(√33,+∞) C .(√3,+∞) D .(√33,+∞) 【解析】设向量a →,b →的夹角为θ,|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b⃑⃑|=√7, 则(a ⃑−b ⃑⃑)2=a ⃑2+b ⃑⃑2−2a ⃑∙b ⃑⃑=1+4-2×1×2×cosθ=7,∴cosθ=−12,∴θ=120°,∴a ⃑∙b⃑⃑=−1, 又|ka ⃑+tb ⃑⃑|>1,∴(ka ⃑+tb ⃑⃑)2>1,即k 2a ⃑2+t 2b ⃑⃑2+2kta ⃑∙b ⃑⃑=k 2+4t 2−2kt >1对于任意实数k 恒成立,∴k 2−2kt +4t 2−1>0对于任意实数k 恒成立,∴∆=(2t )2-4(4t 2−1)<0,∴t<−√33或t>√33,故选B .7.【江西省宜丰中学2019届高三第二次月考】在R 上定义运算⊗:x ⊗y =x(1−y),若不等式(x −a)⊗(x +a)<1对任意实数x 恒成立,则实数a 的取值范围为 ( )A .−1<a <1B .−12<a <32C .−32<a <12D .0<a <2【解析】根据题设新定义的运算,可得(x −a)⊗(x +a)=(x −a )(1−x −a ),所以(x −a)⊗(x +a)<1可转化为(x −a )(1−x −a )<1,即x 2−x +(1−a 2+a )>0恒成立,根据二次函数的性质可知Δ=1−4(1−a 2+a )<0,解得−12<a <32,故选B.8.【山东省滨州市2019届高三期中】若对于任意的x >0,不等式mx ≤x 2+2x+4恒成立,则实数m 的取值范围为( )A .(﹣∞,4]B .(﹣∞,6]C .[﹣2,6]D .[6,+∞)【解析】当x >0时,mx ≤x 2+2x +4∴m ≤x +4x+2对任意实数x >0恒成立,令f (x )=x +4x+2,则m ≤f (x )min ,∴f (x )=x +4x+2≥2√x ⋅4x+2=6,∴m ≤6.故选B .9.【宁夏银川一中2018届高三第二次模拟】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是A .[1,+∞)B .[−1,4)C .[−1,+∞)D .[−1,6]11 / 13【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥yx −2(y x )2,对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,a 的取值范围是[−1,+∞),故选C.10、若关于x 的二次不等式01)1(2<-+-+a x a ax 恒成立,则实数a 的取值范围是________. 【分析】利用a 的符号及判别式求解.【解析】由题意知,01)1(2<-+-+a x a ax 恒成立,所以⇔⎩⎨⎧<∆<00a ⎩⎨⎧<---<0)1(4)1(02a a a a ⇔⎩⎨⎧>--<012302a a a ⇔⎪⎩⎪⎨⎧-<><3110a a a 或⇔31-<a . ∴a 的取值范围是⎪⎭⎫ ⎝⎛-∞-31, 11. 不等式(acos 2x −3)sinx ≥−3对∀x ∈R 恒成立,则实数a 的取值范围是________.【解析】令sin =t,−1≤t ≤1,则原函数化为g (t )=(−at 2+a −3)t ,即g (t )=−at 3+(a −3)t , 由−at 3+(a −3)t ≥−3,−at (t 2−1)−3(t −1)≥0,(t −1)(−at (t +1)−3)≥0及t −1≤0知, −at (t +1)−3≤0,即a (t 2+t )≥−3,当t =0,−1时(1)总成立,对0<t ≤1,0<t 2+t ≤2,a ≥(−3t 2+t )max=−32;对−1<t <0,−14≤t 2+t <0,a ≤(−3t 2+t)min=12,从而可知−32≤a ≤12,故答案为[−32,12].12. 若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立,则实数k 的取值范围为______. 【解析】若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立, 则直线y =k (x +3)在y =|x 2−4x −5|, x ∈[−1,5]图象的上方,如图:联立:{y =k (x +3)y =5+4x −x2 ,可得x 2+(k −4)x +3k −5=012 / 13令∆=(k −4)2−4(3k −5)=0,k =2或18(舍去) ∴k >2,故答案为:k >213、 设函数2()2f x mx mx =--(1)若对于一切实数()0f x <恒成立,求m 的取值范围;(2)若对于[1,3],()2(1)x f x m x ∈>-+-恒成立,求m 的取值范围.【分析】(1)由不等式220mx mx --<恒成立,结合二次函数的性质,分类讨论,即可求解; (2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,整理得只需221xm x x >-+恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式220mx mx --<恒成立,∴当0m =时,显然20-<成立,所以0m =时,不等式220mx mx --<恒成立;∴当0m ≠时,只需2080m m m <⎧⎨∆=+<⎩,解得80m -<<, 综上所述,实数m 的取值范围为(8,0]-.(2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,只需22mx mx m x -+>恒成立,只需()212m x x x -+>,又因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,只需221x m x x >-+,令222211111x y x x x x x x ===-+-++-,则只需max m y >即可,因为12x x +>=,当且仅当1x x =,即1x =时等式成立; 因为[1,3]x ∈,所以max 2y =,所以2m >.14.(2019·江苏南通一中高一期末)已知a ∴R ,函数f (x )=x 2﹣2ax +5. (1)若a >1,且函数f (x )的定义域和值域均为[1,a ],求实数a 的值; (2)若不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,求实数a 的取值范围. 【分析】(1)根据f (x )的图象开口向上,对称轴为x =a >1,知f (x )在[1,a ]上单调递减,所以f (1)=a 求解即可.13 / 13(2)将不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,去绝对值转化为a 2512x x -≥且a 2512x x+≤在 x ∴[13,12]恒成立,分别令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],用二次函数求其最大值,令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12],求其最小值即可. 【详解】(1)∴f (x )的图象开口向上,对称轴为x =a >1,∴f (x )在[1,a ]上单调递减, ∴f (1)=a ,即6﹣2a =a ,解得a =2..(2)不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立, 即x |2ax ﹣5|≤1对x ∴[13,12]恒成立, 故a 2512x x -≥且a 2512x x +≤在x ∴[13,12]恒成立,令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],所以g (x )max =g (25)258=, 所以258a ≥.令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12], 所以h (x )min =h (12)=7,所以7a ≤.综上:2578a ≤≤.。
恒成立问题基本题型一 转化为二次函数,利用分类讨论思想解题例1. 已知函数f(x)=x 2-2ax+4在区间[-1,2] 上都不小于2,求a 的值。
解:由函数f(x)=x 2-2ax+4的对称轴为x=a所以必须考察a 与-1,2的大小,显然要进行三种分类讨论1.当a ≥2时f(x)在[-1,2]上是减函数此时m in )(x f = f(2)=4-4a+42≥ 即a 23≤ 结合a ≥2,所以a 的解集为φ 2.当a 1-≤ 时 f(x)在[-1,2]上是增函数, m in )(x f = f(-1)=1+2a+42≥结合a 1-≤ 即123-≤≤-a 3.当-1<a<2时 m in )(x f = f(a)=a 2-2a 2+4 2≥ 即≤-2a 2≤ 所以21≤<-a综上1,2,3满足条件的a 的范围为:223≤≤-a 二 确定主元,构造函数,利用单调性解题例2.对于满足0≤a ≤4的所有实数a 求使不等式x 2+ax>4x+a-3都成立的x 的取值范围。
解:不等式变形为x 2+(x-1)a-4x+3>0设f(a)= (x-1)a+x 2-4x+3,则其是关于a 的一个一次函数:是单调函数结合题意有⎩⎨⎧>>0)0(0)4(f f 即 得1-<x 或3>x 三 利用不等式性质解题例3.若关于x 的不等式|x-2|+|x+3|≥a 恒成立,试求a 的范围 解:由题意知只须min )32(++-≤x x a 由5)3(232=+--≥++-x x x x 所以 5≤a四 构造新函数,利用导数求最值:例4.已知)1lg(21)(+=x x f )2lg()(t x x g +=若当]1,0[∈x 时)()(x g x f ≤在[0,1]恒成立,求实数t 的取值范围。
解:)()(x g x f ≤在[0,1] 上恒成立,即021≤--+t x x 在[0,1]上恒成立 令t x x x F --+=21)( 则须F(x)在[0,1]上的最大值小于或等于0所以 121412121)('++-=-+=x x x x F 又]1,0[∈x 所以0)('<x F 即)(x F 在[0,1]上单调递减所以)0(max )(F x F = 即01)0()(≤-=≤t F x F 得 1≥t{0340122>+->-x x x(说明:若将恒成立改成有解,即)()(x g x f ≤在[0,1]上有解,则应F(x)min 0≤。
二次函数中“含参恒成立”问题求解策略二次函数是一个具有形式为$f(x) = ax^2 + bx + c$的函数,其中$a$、$b$、$c$是常数,且$a\neq 0$。
在解题过程中,当给定一定的条件,要求找到使得二次函数“含参恒成立”的参数值,需要采取以下步骤。
第一步:理解含参恒成立的概念含参恒成立是指对于二次函数中的参数值,存在一个或一组满足特定条件的解使得方程恒成立。
通常来说,这些参数值可以是实数、整数或者满足特定要求的整数。
第二步:分析题目条件仔细阅读题目,分析所给条件以及问题的要求。
通常来说,问题中会涉及到函数图像的性质、方程的解的个数、方程的根的取值范围等。
第三步:确定参数的取值范围根据题目中给出的条件,确定参数的取值范围。
这方面通常包括参数的正负性质以及其他限制条件。
第四步:构建二次方程根据题目要求以及参数的取值范围,构建二次方程。
一般来说,可以通过给定条件构建出包含参数的二次方程。
第五步:解二次方程解二次方程的方法有多种,可以通过求根公式或者配方法解方程。
第六步:验证解的合法性将求得的解代入构建的二次方程中,验证是否满足题目给定的条件。
如果满足条件,则该参数取值使得二次函数“含参恒成立”。
第七步:总结答案将满足条件的参数值以及求得的二次方程的解进行总结,得出最终答案。
如果存在多个满足条件的参数值,需要将所有解都列出。
在实际解题过程中,每一步都要仔细思考、分析,并得出合理的解答。
需要注意的是,由于题目条件的不同,求解的策略也会有所差异。
因此,根据具体情况灵活运用解题策略是非常重要的。
二次不等式恒成立问题一、恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f(1)(<x f (2)(<x f 类型3>)(x f 类型4(1)f (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例1.若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 策略二:利用函数的最值(或值域)(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
简单计作:“大的大于最大的,小的小于最小的”。
由此看出,本类问题实质上是一类求函数的最值问题。
例2.已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.解析本题可以化归为求函数f (x )在闭区间上的最值问题,只要对于任意2)(],2,2[m in ≥-∈x f x .若2)(],2,2[≥-∈x f x 恒成立⇔2)(],2,2[m in≥-∈∀x f x ⇔⎪⎩⎪⎨⎧≥-=-=-≤-237)2()(22m in a f x f a或⎪⎪⎩⎪⎪⎨⎧-(2x f a 例3.解:设当=∆当≥∆⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
二次函数的恒成立问题例 (1)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围是.答案 ⎝⎛⎭⎫-∞,12 解 由题意知2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,符合题意,a ∈R ;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16, 因为1x∈(-∞,-1]∪[1,+∞), 所以当x =1时,不等号右边式子取最小值12,所以a <12. 综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. (2)函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则实数a 的最大值为.答案 2解 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎡⎦⎤1a ,a ,显然g (t )在⎣⎡⎦⎤1a ,a 上递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8成立,所以有a 2+3a -2≤8,解得-5≤a ≤2, 又a >1,所以1<a ≤2,所以a 的最大值为2.(3)(2019·九江调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是. 答案 (-∞,-2)解 由题意知f (x )在R 上是增函数,结合f (-4t )>f (2m +mt 2)对任意实数t 恒成立,知-4t >2m +mt 2对任意实数t 恒成立,∴mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒ m ∈(-∞,-2).素养提升逻辑推理是指从一些事实命题出发,依据逻辑规则推出另一个命题的思维过程,逻辑推理也是我们解决数学问题最常用、最重要的手段.二次函数的恒成立问题的求解中处处渗透了逻辑推理,此类题目可帮助我们养成严谨、缜密的思维习惯.。