9. 刚体习题课解析
- 格式:ppt
- 大小:1.79 MB
- 文档页数:1
作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
刚体的平面运动习题答案刚体的平面运动习题答案刚体的平面运动是力学中的一个重要课题,它涉及到物体在平面上的运动规律和力的作用方式。
在学习这一课题时,我们常常会遇到一些习题,下面我将为大家提供一些关于刚体平面运动的习题答案,希望能够帮助大家更好地理解和掌握这一知识点。
1. 习题一:一个质量为m的刚体在水平地面上受到一个水平力F的作用,求刚体受力情况下的加速度。
解答:根据牛顿第二定律,刚体的加速度与作用在其上的合外力成正比,与刚体的质量成反比。
因此,刚体的加速度可以表示为a = F/m。
2. 习题二:一个质量为m的刚体以速度v沿x轴正方向运动,受到一个大小为F的力沿y轴正方向作用,求刚体的加速度和运动轨迹。
解答:由于刚体受到的力只有在y轴上的F,所以刚体在x轴方向上不受力,即不会有加速度。
而在y轴方向上,刚体受到的力F会引起加速度的产生。
根据牛顿第二定律,我们可以得到刚体在y轴方向上的加速度为a = F/m。
至于刚体的运动轨迹,由于在x轴方向上没有加速度,刚体将以匀速直线运动,而在y轴方向上有加速度,刚体将在y轴上做匀加速运动。
3. 习题三:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相同,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相同,所以刚体受到的力将会增加其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = F/m。
4. 习题四:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相反,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相反,所以刚体受到的力将会减小其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = -F/m。
5. 习题五:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向成一定的夹角θ,求刚体在力作用下的加速度。
解答:对于这个习题,我们可以将力F分解为两个分力F1和F2,其中F1与刚体的速度方向相同,F2与刚体的速度方向垂直。
命题教师:郑永春试题审核人:张郡亮1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma _,对通过三角形中心且平行于其一边的轴的转动惯量为J A = _丄口£_,对通过三角形— --- =—2—"中心和一个顶点的轴的转动惯量为匾(C ) 5、一圆盘正绕垂直于盘面的水平光滑固定轴 0转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,衡水学院理工科专业 《大学物理B 》刚体力学基础习题2、两个质量分布均匀的圆盘 A 和B 的密度分别为设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为3、一作定轴转动的物体,对转轴的转动惯量J =力矩M 12 N • m 当物体的角速度减慢到 =rad/s 时,物体已转过了角度P A 和P B ( P A > P B ),且两圆盘的总质量和厚度均相同。
J A 和 J B ,则有 J A < J B 。
4、 两个滑冰运动员的质量各为70 kg ,均以m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m 当彼此交错时,各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg -m 2-s 1 ;它们各自收拢绳索,到绳长为 5 m 时,各自的速率 =13 m-s 1。
5、 有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将变大,角加速度大小将 变小。
、单项选择题(每小题2分)1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: B. A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C. D.当这两个力的合力为零时,它们对轴的合力矩也一定是零; 当这两个力对轴的合力矩为零时,它们的合力也一定是2、 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体。
六、刚体力学一、选择题1、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?(A)角速度从小到大,角加速度从大到小(B)角速度从小到大,角加速度从小到大(C)角速度从大到小,角加速度从大到小(D)角速度从大到小,角加速度从小到大2、将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m的重物,飞轮的角加速度为,如果以拉力2mg代替重物拉绳时,飞轮的角加速度将(A)小于(B)大于,小于2(C)大于2(D)等于23、一个物体正在绕固定光滑轴自由转动,(A)它受热膨胀或遇冷受缩时,角速度不变(B)它受热时角速度变大,遇冷时角速度变小(C)它受热或遇冷时,角速度变大(D)它受热时角速度变小,遇冷受缩时角速度变大4、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度(A)增大(B)不变(C)减小(D)不能确定5、光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为,起初杆静止,桌面上有两个质量均为m的小球,各自在杆的垂直方向正对着杆的一端以相同的速率v 相向运动,(如图所示),当两小球同时与杆的两端点发生完全非弹性碰撞后,就与杆粘在一起运动,则这一系统碰撞后的转动角速度为(A)(B)(C)(D)6、一圆盘绕过盘心且与盘面垂直的轴O以角速度按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用在圆盘上,则圆盘的角速度(A)必然增大(B)必然减小(C)不会改变(D)如何变化不能确定7、刚体角动量守恒的充分而必要的条件是(A)刚体不受外力矩的作用(B)刚体所受合外力矩为零(C)刚体所受合外力和合外力矩为零(D)刚体的转动惯量和角速度均保持不变8、有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度转动,此时有一质量为m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)(B)(C)(D)9、一力矩M作用在飞轮上,飞轮的角加速度为,如撤去这一力矩,飞轮的角加速度为,则该飞轮的转动惯量为(A)(B)(C)(D)10、如图所示,一静止的均匀细棒,长为L,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,转动惯量为。
第三章刚 体 力 学解题指导(一) 基本要求在刚体力学部分中对于刚体运动学的解题,应该首先学会确定刚体在空间的位置.从数学上说,就是要找出描述刚体位置的参数随时间变化的数学方程式.作为刚体的位置参数,即刚体自由度的确定就显得重要了.刚体的自由度,可以按照刚体运动分类而很快确定.由于刚体可以被看作包含几个质点的质点组,所以利用质点组质心运动定理和对于质心的动量矩定理,就可以写出刚体的运动微分方程.⎪⎭⎪⎬⎫===z y x F z m F ym F xm 000 解决移动问题⎪⎪⎪⎭⎪⎪⎪⎬⎫'=''=''='z z y y x x M dtJ d M dt J d M dt J d 解决转动问题 这六个方程,对求解一般运动的刚体(六个自由度)足够了.它表明:在外力作用下的刚体,它的质量中心就具有刚体所具有的质量,而且主矢就在质心上,因而对质心的动量矩就可以看成对固定点之矩的形式.在解决有关刚体运动问题之前,应该先队刚体的转动惯量、刚体的动能、动量矩的基本概念有一充分了解;同时,只有正确将刚体运动分类,然后再按各解法去计算.这里,我们主要介绍刚体的定轴转动、平面平行运动及定点运动的解题方法.(二) 基本方法前面介绍过刚体运动学需要了解的一些基本问题,实际上就是找出刚体自由度数及建立能决定刚体所在坐标系中位置的方程式,然后再用数学知识去解方程.但是对于不同的刚体运动,往往还有一些特殊而便捷的方法.1.用动力学微分方程z zz dtd I M ω=来解决刚体定轴转动力学问题是应用最多的一个方程.它与牛顿第二定律a F m =形式相似,它既可以解决①已知刚体转动定律,求作用于刚体上的外力矩;也可以解决②已知刚体受到的外力矩;还可以直接积分求出刚体转动角随时间的变化规律来;即运动规律。
有时还可以采用能量方程E V I zz =+221ω与其联合使用,而求得定轴转动的一般问题.2.在平面平行运动中,刚体转动瞬心的确定,对解决角速度和各点的速度会带来很大的方便.要注意,刚体的平面平行运动可以看成刚体的平动和绕基点转动运动的合成.由于刚体内各点的位移、速度、加速度是各不相同的,因而谈不上什么刚体的位移、速度、加速度.应当把“刚体运动”与刚体内各点运动区别开来.我们所说的“刚体”其实就是一个平行固定面的剖面.在运动学中,基点的选取可以是任意的.但在动力学中,为了利用质心运动定律,相对质心的动量矩定理通常是取质心为基点,从而写出平面平行运动的动力学方程.若对瞬心应用动量矩定理写出它的动力学方程,必须是有条件的,有一点是必须注意到.这三个方程是彼此独立的,在直角坐标系中表示为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫===∑∑==zc oni yc c ni xc c M dtd I F y m F xm ω11如果未知量数目多于独立的方程数,还应根据题设条件、运动学关系及约束条件、增补方程.刚体平面平行运动力学题目往往有多种解法.所以可以看成是动力学普遍定理的综合应用题.解题步骤最好参照以下形式进行:① 确定运动形式,选定研究对象;② 对研究对象进行受力分析(主动力、约束力、力矩) ③ 选好坐标系,写出相应方程; ④ 解方程,并讨论之.若使用了动量矩定理,在这里尤其要注意到,动量矩定理对固定点,对质心都是成立的,但对瞬心是有条件成立的.其充分必要条件是:质心和瞬心的距离r 在刚体运动过程中保持不变.例如,质心在几何中心的圆柱、圆筒、圆球等沿任意曲面的运动.3.刚体绕固定点的转动是一个诱人而复杂的论题,它也许是经典力学的最高点和最困难的部分.在这个论题中叵转器和陀螺是各种问题的原型,它的精巧而有趣的行为常常使人难以理解。