习题课(刚体)
- 格式:ppt
- 大小:503.50 KB
- 文档页数:17
题:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转题解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα (2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题解:(1)根据题意中转速随时间的变化关系,将t s 代入,即得100s 6.895.01--==⎪⎪⎭⎫ ⎝⎛-=ωωωτt e(2)角加速度随时间变化的规律为220s 5.4d d ---===tt e e t ττωωα (3)t = s 时转过的角度为rad 9.36d 1d 60060=⎪⎪⎭⎫ ⎝⎛-==⎰⎰-s t s t et τωωθ 则t = s 时电动机转过的圈数圈87.52==πθN 题:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半(2)在此时间内共转过多少转题解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为J C t ωωα-==d d (1)根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t 由于C 和J 均为常量,得t J C e -=0ωω 当角速度由0021ωω→时,转动所需的时间为 2ln CJ t = (2)根据初始条件对式(2)积分,有⎰⎰-=t t J C t e 000d d ωθθ即CJ 20ωθ= 在时间t 内所转过的圈数为CJ N πωπθ420== 题:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
单元五 角动量和角动量守恒定律 1一 选择题01. 如图所示,一人造地球卫星到地球中心O 的最大距离和最小距离分别是A R 和B R 。
设卫星对应的角动量分别是,A B L L ,动能分别是,KA KB E E ,则应有 【 D 】(A) B AKA KBL L E E >⎧⎨>⎩;(B) B AKA KB L L E E >⎧⎨=⎩;(C) B AKA KB L L E E <⎧⎨>⎩;(D) B AKA KBL L E E =⎧⎨<⎩。
02. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂。
现有一个小球自左方水平打击细杆。
设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 【 C 】(A) 只有机械能守恒; (B) 只有动量守恒;(C) 只有对转轴O 的角动量守恒; (D) 机械能、动量和角动量均守恒。
03. 如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O 。
该物体原以角速度ω在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉。
则物体 【 D 】(A) 动能不变,动量改变; (B) 动量不变,动能改变;(C) 角动量不变,动量不变; (D) 角动量不变,动能、动量都改变。
选择题_02图示 选择题_03图示 选择题_04图示选择题_01图示04. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? 【 A 】 (A) 角动量从小到大,角加速度从大到小; (B) 角动量从小到大,角加速度从小到大; (C) 角动量从大到小,角加速度从大到小;(D) 角动量从大到小,角加速度从小到大。
05. 刚体角动量守恒的充分而必要的条件是 【 B 】(A) 刚体不受外力矩的作用; (B) 刚体所受合外力矩为零;(C) 刚体所受的合外力和合外力矩均为零; (D) 刚体的转动惯量和角速度均保持不变。