高一数学导数的概念
- 格式:doc
- 大小:291.00 KB
- 文档页数:15
高一数学知识点总结导数导数是高中数学中比较重要的一个概念,也是高中数学中的难点之一。
在高一的数学学习中,导数也是一个必须要掌握的知识点。
本文将对高一数学中的导数进行总结和梳理,以帮助同学们更好地理解和掌握导数的相关知识。
首先,导数的定义是导数是函数在某一点处的变化率。
具体来说,对于函数y=f(x),如果函数在点x处的导数存在,那么导数的值即为函数在该点处的斜率。
导数的定义式可以写为:dy/dx = lim (Δx→0) [(f(x+Δx) - f(x))/Δx]其中,dy/dx表示函数y=f(x)的导数,Δx表示x的增量即为x 的变化量。
在导数的计算过程中,需要利用一些基本的求导公式。
这些求导公式包括常数乘法法则、幂函数求导法则、和差法则以及乘法法则和除法法则等。
这些求导公式是导数计算的基础,掌握它们对于正确求导是非常重要的。
在高一的数学课程中,导数的应用主要包括求函数的极值、函数的最值、函数的解析式以及函数的图像的凹凸性等。
其中,求函数的极值是求解导数为0的点,从而得到函数的极值点。
而求函数的最值则是通过求导和求极值的过程来确定函数的最大值和最小值。
此外,根据导数的符号变化也可以判断函数的单调性。
这些应用是导数在实际问题中的具体应用,对于理解导数的意义和使用有很大的帮助。
在导数的计算中,有一些特殊函数需要特别注意。
其中,指数函数、对数函数、三角函数以及反三角函数是高中数学中经常遇到的函数。
这些函数的导数公式是求导时的重要依据。
对于指数函数和对数函数,需要掌握其导数的基本公式。
对于三角函数和反三角函数,需要掌握其导数公式以及其变换形式。
这些函数的导数计算是导数求解过程中的关键。
除了一元函数的导数之外,高一的数学中还涉及到多元函数的导数。
多元函数的导数是在给定坐标系下对函数在某一点处的各个方向的变化率的总结。
多元函数的导数计算需要用到偏导数的概念和方法。
偏导数即是将多元函数对每个自变量求导,而其他自变量视作常数。
导数的概念和定义导数的概念和定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在实际应用中,导数可以用来求解函数的最大值、最小值、拐点等问题。
本文将从以下几个方面详细介绍导数的概念和定义。
一、导数的基本概念导数是函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。
具体地说,设函数y=f(x),则它在x=a处的导数定义为:f'(a) = lim (f(x) - f(a)) / (x - a) (x → a)其中,“lim”表示极限,“(x-a)”表示自变量x沿着无限接近于a但不等于a的方向逼近时所取得的差值,“f(x)-f(a)”表示因变量y沿着这个方向所取得的差值。
二、导数的几何意义从几何角度来看,函数在某一点处的导数等于该点处切线斜率。
具体地说,设函数y=f(x),则它在x=a处切线斜率k为:k = lim (f(x) - f(a)) / (x - a) (x → a)当自变量x沿着无限接近于a但不等于a的方向逼近时,切线斜率k即为导数f'(a)。
因此,导数可以用来描述函数在某一点处的变化率。
三、导数的符号表示通常情况下,我们用f'(a)来表示函数y=f(x)在x=a处的导数。
其中,f'表示函数的导数运算符,被称为“d/dx”或“dy/dx”。
四、导数的计算方法求解函数在某一点处的导数需要使用极限运算。
具体地说,可以通过以下几种方法来计算函数在某一点处的导数:1. 使用极限定义法:根据导数的定义公式,将自变量沿着无限接近于该点但不等于该点的方向逼近,并求出其极限值。
2. 使用公式法:对于常见函数(如幂函数、指数函数、对数函数等),可以直接使用其导数公式进行计算。
3. 使用运算法则:对于复合函数和多项式函数等复杂函数,可以使用求导法则(如加减乘除法则、链式法则等)进行计算。
五、导数存在的条件有些函数在某些点处可能不存在导数。
具体地说,一个函数在某一点处存在导数需要满足以下两个条件:1. 函数在该点附近存在连续性;2. 函数在该点附近存在斜率有限的切线。
导数知识点概念总结高中一、导数的定义导数的定义是函数变化率的极限,可以用极限的方法来定义。
给定函数y=f(x),如果在某一点x处存在极限lim Δx→0 (f(x+Δx) - f(x)) / Δx则称函数f(x)在点x处可导,该极限就是函数f(x)在点x处的导数,记作f'(x) 或 dy/dx。
导数的几何意义是函数图像在某一点处的切线斜率,也可以理解为函数曲线在该点处的局部线性近似。
导数的几何直观使得我们可以通过导数来研究函数的性质和行为。
二、导数的几何意义导数表示了函数在某一点处的切线的斜率,切线的斜率可以理解为函数在这一点的瞬时变化率。
对于一条曲线,我们可以通过切线的斜率了解函数在某点的瞬时变化情况,从而分析函数的特性。
三、导数的计算常见的函数的导数计算方法有以下几种:1. 利用导数的定义进行计算。
根据导数的定义,求出函数在某一点的导数需要利用极限的概念进行计算,这种方法较为繁琐,但是可以直观地了解导数的物理意义。
2. 利用导数的性质进行计算。
导数有一系列的运算法则,这些运算法则包括和、差、积、商的求导法则,以及复合函数求导、反函数求导等等,可以通过这些性质进行导数的计算。
3. 利用导数的几何意义进行计算。
对于一些简单的函数,可以通过函数图像的几何性质来计算导数,从而得到函数在某一点的导数值。
四、导数的应用1. 导数在函数的极值问题中的应用。
利用导数可以求解函数的极值问题,包括极大值和极小值,这对于优化问题和最优化问题是非常重要的。
2. 导数在曲线的凹凸性和拐点问题中的应用。
函数的凹凸性和拐点可以通过函数的二阶导数来判断,这对于函数曲线的形状和特性有很大的帮助。
3. 导数在变化率和速度问题中的应用。
在物理学和工程学中,导数可以用来描述物体的运动和速度,从而研究物体的运动规律和加速度问题。
4. 导数在微分方程中的应用。
微分方程是研究变化规律的重要工具,导数的概念在微分方程中有着广泛的应用,可以描述各种变化规律和动力学问题。
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。
也就是说,导数描述了函数在某一点处的变化率。
如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。
2. 导数的代数定义设函数y=f(x),在点x0处可导。
如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。
这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。
二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。
不过反之不成立。
2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。
高一必修一数学导数知识点导数是高一数学中的一个重要内容,是基础数学与高阶数学的必修知识之一。
它对于解决问题、研究变化率、求解极值等方面有着重要的应用。
下面我将介绍高一必修一数学导数的一些基本知识点。
一、导数的定义与性质导数的定义是:设函数y=f(x)在点x0的某一邻域内有定义,如果极限lim(x->x0)[f(x)-f(x0)]/[x-x0]存在,那么这个极限就是函数f(x)在点x0处的导数,记作f'(x0),也可以称为函数f(x)在点x0处的切线斜率。
导数的性质有如下几点:1. 导数的存在性:一个函数在某一点上的导数存在,是函数在该点可导的充分必要条件。
2. 可导必连续:如果一个函数在某一点可导,则该点上的函数连续。
3. 连续未必可导:一个函数在某一点连续,未必能够在该点上导。
4. 导数的代数运算:对于可导函数f(x)和g(x),有如下运算规则:a) (cf(x))' = cf'(x) (c为常数)b) (f(x) ± g(x))' = f'(x) ± g'(x)c) (f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)d) (f(x)/g(x))' = (f'(x)·g(x) - f(x)·g'(x))/[g(x)]^2(g(x)≠0)二、常见函数的导数表达式1. 幂函数:f(x) = x^n(n为非零实数),则有f'(x) = nx^(n-1)。
(注:0^0无导数)2. 指数函数:f(x) = a^x(a>0,且不等于1),则有f'(x) =ln(a)·a^x。
3. 对数函数:f(x) = log_a(x)(a>0,且不等于1),则有f'(x) = 1/[x·ln(a)]。
高中数学导数的定义及求导公式解题技巧导数是高中数学中的重要概念,它描述了函数在某一点处的变化率。
理解导数的定义以及掌握求导公式是解决各类导数题目的关键。
本文将介绍导数的定义及求导公式,并通过具体的题目分析和解答,帮助读者掌握解题技巧。
一、导数的定义导数的定义是函数在某一点处的变化率,用数学符号表示为f'(x)或dy/dx。
导数可以理解为函数图像上某一点处的切线斜率,也可以表示为函数的瞬时变化率。
对于函数y=f(x),若在点x处导数存在,则导数的定义为:f'(x) = lim(x→0) (f(x+h) - f(x))/h其中lim表示极限,h表示x的增量。
这个定义告诉我们,导数可以通过求函数在某一点的极限来计算。
二、求导公式在高中数学中,我们常用的函数求导公式有以下几种:1. 常数函数的导数为0:f(x) = c,则f'(x) = 0,其中c为常数。
2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1),其中n为正整数。
3. 指数函数的导数:f(x) = a^x,则f'(x) = ln(a) * a^x,其中a为常数。
4. 对数函数的导数:f(x) = log_a(x),则f'(x) = 1/(x * ln(a)),其中a为常数。
5. 三角函数的导数:f(x) = sin(x),则f'(x) = cos(x);f(x) = cos(x),则f'(x) = -sin(x);f(x) = tan(x),则f'(x) = sec^2(x)。
以上是常用的求导公式,掌握它们可以帮助我们快速求解各类导数题目。
三、解题技巧在解题过程中,我们可以运用导数的定义和求导公式来解决各类导数题目。
下面通过具体的题目来说明解题技巧。
题目一:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在点x=2处的导数。
解析:根据求导公式,我们可以依次求出每一项的导数,然后将它们相加。
导数知识点总结高一数学导数知识点总结(高一数学)一、导数的引入在数学中,导数是一个重要的概念,它描述了函数在某一点处的变化率。
导数的引入源于求函数的变化趋势和变化速率的需求。
通过导数,我们可以更加准确地描述和研究函数的性质。
二、导数的定义导数的定义是基于函数的极限概念的。
设函数y=f(x),如果在点x_0的某个邻域内存在极限lim_(Δx→0)[(f(x_0+Δx)−f(x_0))/Δx],则称此极限为函数f(x)在点x_0处的导数。
记为f′(x_0)。
三、导数的基本性质1. 导数与函数的连续性:若函数在某点处可导,则该点处必然连续;反之,函数在某处不连续,则该点处不可导。
2. 导数与函数的相对增减性:若导数存在且大于0,函数在该点右侧为增函数;若导数存在且小于0,函数在该点右侧为减函数。
3. 导数与函数的微分变化:函数f(x)在x_0的瞬时变化率等于其导数f′(x_0),即Δy=f′(x_0)·Δx。
这种微分变化与函数在该点的切线斜率有关。
四、常用函数的导数1. 幂函数的导数:设f(x)=x^n,其中n为常数,则f′(x)=nx^(n-1)。
例如,f(x)=x^2,则f′(x)=2x。
2. 指数函数的导数:设f(x)=a^x,其中a为常数且a>0,则f′(x)=a^x·lna。
例如,f(x)=2^x,则f′(x)=2^x·ln2。
3. 对数函数的导数:设f(x)=lnx,则f′(x)=1/x。
4. 三角函数的导数:设f(x)=sinx,则f′(x)=cosx;设g(x)=cosx,则g′(x)=-sinx。
五、基本导数法则对于一些特定函数的运算,我们可以利用基本导数法则来求得其导数。
1. 函数和常数的乘积的导数:设h(x)=c·f(x),其中f(x)为任意函数,c为常数,则h′(x)=c·f′(x)。
例如,如果h(x)=3·x^2,则h′(x)=3·2x=6x。
导数的概念和定义高数高等数学中,导数是一个重要的概念,用于描述函数的变化速率。
导数的定义及其性质是高等数学学习的重点内容之一。
本文将对导数的概念和定义进行详细论述。
1. 导数的概念导数是描述函数在某一点上的变化率。
对于函数f(x),它在点x=a处的导数可以用极限的形式表示:f'(a)=lim[(f(x)-f(a))/(x-a)], x→a其中,f'(a)表示函数f(x)在点x=a处的导数,也可以记作dy/dx|{x=a}或df(x)/dx|{x=a}。
导数可以理解为函数曲线在某一点上的切线斜率。
2. 导数的定义导数的定义基于极限的概念。
一个函数在某一点上的导数等于函数曲线在该点处的切线斜率,也就是曲线与x轴之间的夹角的正切值。
具体来说,对于函数f(x),在点x=a处的导数可以用以下公式表示:f'(a)=lim[(f(x)-f(a))/(x-a)], x→a对于函数f(x)=kx^n,其中k和n都是常数,可通过求导的方式计算导数。
根据定义和导数的特性,我们可以得到:- 常数的导数为0:如果f(x)=k,其中k是一个常数,那么f'(x)=0。
- 幂函数的导数:对于f(x)=x^n,其中n是正整数,f'(x)=nx^(n-1)。
- 指数函数的导数:对于f(x)=a^x,其中a为正实数且a≠1,f'(x)=a^x * ln(a)。
3. 导数的几何意义导数具有重要的几何意义。
对于函数f(x),在点x=a处的导数f'(a)表示函数曲线在该点处的切线斜率。
当导数为正时,函数曲线在该点处向上增长;当导数为负时,函数曲线在该点处向下减小;当导数为零时,函数曲线在该点处具有极值(最大值或最小值)。
通过导数可以描绘出函数的整体特征,包括函数的增减性、极值点、拐点等。
通过对导数图像的分析,可以得到函数图像的大致形态。
4. 导数的计算规则导数的计算有一些特定的规则。
导数知识点笔记总结高中一、导数的定义导数是函数的一种特殊的变化率,描述了函数在某一点附近的局部变化情况。
导数可以通过极限的概念来定义,如果函数f(x)在点x0处可导,则其导数f'(x0)表示函数在该点处的斜率,即切线的斜率。
导数可以用来描述函数在某一点的变化趋势,其绝对值表示了函数曲线在该点的斜率大小,正负号表示了函数曲线的增减性。
二、导数的计算1. 用极限定义导数:对于函数f(x),其在点x0处的导数可以通过以下极限计算得到:\[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h)-f(x_0)}{h} \]如果该极限存在,则函数在点x0处可导,其导数即为该极限的值。
2. 使用导数的性质:导数具有一些常用的性质,如常数的导数为0,幂函数的导数为其指数乘以原函数的导数等,可以利用这些性质来简化导数的计算。
3. 使用导数的基本公式:常见函数的导数有一些基本的求导公式,例如:- f(x) = k,导数为0;- f(x) = x^n,导数为n*x^(n-1);- f(x) = e^x,导数仍为e^x;- f(x) = sin(x),导数为cos(x);- f(x) = cos(x),导数为-sin(x);- f(x) = tan(x),导数为sec^2(x)。
通过这些基本公式,可以快速求得常见函数的导数。
三、导数的应用导数在数学中有着广泛的应用,常见的应用包括:1. 描述曲线的斜率:导数可以描述函数曲线在某一点的斜率,通过导数可以了解函数在各个点的斜率,进而描绘出整个曲线的形状。
2. 确定函数的增减性:当导数大于0时,函数增加;当导数小于0时,函数减小;当导数等于0时,函数可能达到极值。
通过导数可以判断函数在某一区间上的增减性。
3. 寻找极值点:通过导数可以确定函数的极值点,即在导数等于0或不存在的点处,函数可能取得极大值或极小值。
4. 切线方程与切线问题:导数可以用来求解函数曲线在某一点的切线方程,从而描述曲线在该点的局部性质。
高一数学《认识导数》知识点总结在高一数学学习中,《认识导数》是一个重要的知识点,它是导数概念的初步认识和应用。
导数在微积分中有着广泛的应用,因此对于高一学生来说,深入理解导数的概念及其基本性质是非常必要的。
本文将对《认识导数》的知识点进行总结,以帮助大家更好地掌握这一重要的数学内容。
1. 导数的定义导数是用来描述函数在某一点上变化率的概念。
设函数y=f(x),在点x0处有定义且有极限,则称函数f(x)在x0处可导。
记为f'(x0)或者y',导数的定义如下:f'(x0) = lim┬(Δx→0)((f(x0+Δx)-f(x0))/(Δx)),其中Δx表示x的增量。
2. 导数的几何意义导数的几何意义是切线的斜率,也就是函数曲线在某一点处的斜率。
当函数y=f(x)在某一点处可导时,函数的图象上必定存在与该点切线相切的切点。
3. 导数的基本性质(1) 可导性与连续性的关系:可导即连续,连续不一定可导。
(2) 导数存在的必要条件:函数在某一点可导,则该点处的左右导数存在且相等。
(3) 基本导数公式:a) 常数函数的导数为0;b) 幂函数y=x^n的导数为y'=nx^(n-1);c) 指数函数y=a^x(a>0且a≠1)的导数为y'=a^x * ln(a);d) 对数函数y=log_a(x)(a>0且a≠1)的导数为y'=1/(x * ln(a));e) 正弦函数和余弦函数的导数分别为y'=cos(x)和y'=-sin(x)。
4. 函数的导数(1) 基本初等函数的导数:a) 常数函数的导数为0;b) 幂函数的导数为幂次减1的结果乘以幂次系数;c) 指数函数和对数函数的导数;d) 三角函数和反三角函数的导数;e) 复合函数的导数运算法则。
(2) 导数的四则运算:a) 和、差的导数等于函数的和、差的导数;b) 乘积的导数等于函数的乘积的导数加上函数的乘积的导数;c) 商的导数等于函数的商的导数减去函数的商的导数。
导数的概念和定义高数导数是微积分中的一个重要概念,用来描述函数在某一点处的变化率。
它在数学和物理学等领域中具有广泛应用,并且是理解微积分的基础之一。
本文将详细介绍导数的概念和定义,并探讨其在高等数学中的意义和应用。
一、导数的概念导数描述了函数在某一点的切线斜率,或者说函数在该点的瞬时变化率。
对于函数f(x),若它在某一点x处的导数存在,那么导数f'(x)表示函数在该点的切线斜率。
如果函数在每一个点的导数都存在,那么这个函数被称为可导函数。
导数的概念可以用极限来精确定义。
设函数f(x)在点x处连续,那么该点的导数f'(x)可以通过以下极限公式来计算:```f'(x) = lim h→0 (f(x+h) - f(x))/h```其中,h表示自变量的增量,即x+h代表一个比x更接近的点。
上述极限即为切线的斜率。
二、导数的定义导数的定义是导数概念的具体表达,用来计算函数在某一点处的导数值。
根据导数的概念,导数的定义可表示为:```f'(x) = lim h→0 (f(x+h) - f(x))/h```这就是导数的一种常见形式定义。
根据这个定义,我们可以计算函数在某一点的导数值。
三、导数的意义和应用导数在高等数学中具有重要的意义和应用。
首先,导数可以用来求函数的极值点。
对于一个可导函数,在其极值点处导数等于0。
通过求导,我们可以找到函数的极值点,并进一步研究函数的性质。
其次,导数可以用来描述函数的变化趋势。
函数的导数可以告诉我们函数在某一点的变化快慢。
如果导数为正,表示函数在该点递增;如果导数为负,表示函数在该点递减;如果导数为零,表示函数在该点取得极值。
此外,导数还可以用来求解曲线的切线方程。
利用导数的概念,我们可以求得曲线在某一点的切线斜率,并通过点斜式方程来求解切线方程。
切线方程在物理学等应用领域中具有重要意义。
导数的概念和定义在高数中是非常基础的概念,它为后续的微积分学习奠定了坚实的基础。
高中导数的定义定义:导数(Derivative)是一种数学概念,是计算函数在某一点的斜率的数学抽象过程。
对于函数y=f(x),x为自变量,y为因变量,导数就是这样一个量:当x在某一特定点发生变化时,y 也会发生变化,而导数就是衡量这种变化程度的量。
一阶导数:当函数y=f(x)在点x处的一阶导数为f(x),也被称作“斜率”,因为它就相当于函数图像在这一点上的切线斜率。
一阶导数有许多专门的符号来表示:在普通数学中,用y或者Df表示,在微分复数中,用d/dx表示。
二阶导数:当函数y=f(x)在点x处的二阶导数为f(x),可以叫做“切率”,因为它就是衡量曲线在该点上的切率。
不同与之前一阶导数表示函数图像在这一点上的切线斜率,二阶导数表示函数图像在这一点上的切率。
普通数学中,用y”或者D2f表示,在微分复数中,用d2/dx2表示。
泰勒公式:泰勒公式是计算函数在某一点的一阶导数的一种工具,是微积分最基本的公式之一。
它可以帮助我们快速求出函数在某一点的导数,比如y=x2,则在点x=1处的一阶导数,可以用原函数的形式:y=2x求出,也可以用泰勒公式求出:y=2(1+0h)=2。
高阶导数:高阶导数就是函数f(x)的第n阶导数,n可以是2、3、4、5……甚至更高,比如f(x)的第3阶导数即为f(x)。
可以用普通数学中的符号y或者D3f表示,在微分复数中,用d3/dx3表示。
定义域:定义域是一个概念,是指函数f(x)定义的域,因为不同函数的定义域是不同的。
比如,函数y=x2的定义域是所有实数集合,函数y=log2x的定义域是x>0的实数集合,函数y=cosx的定义域是(-π,π]的实数集合。
极限:极限(limit)是一种数学概念,是当x趋近于某个特定值时,函数f(x)的输出趋近于某个特定值的概念。
可以把极限看作是一种渐进的思想,比如当函数f(x)在x=a处取得极限L时,就是说当x越来越接近a时,f(x)也越来越接近L。
高一数学导数的基本概念与应用导数是微积分中的重要概念之一,它既有着基本定义,又有着广泛的应用。
本文将对高一数学中导数的基本概念进行介绍,并探讨导数在实际问题中的应用。
1. 导数的基本定义导数是函数在某一点处的变化率。
设函数f(x)在点x=a处可导,那么它的导数f'(a)的定义如下:f'(a) = lim (x->a) [f(x) - f(a)] / (x - a)2. 导数的几何意义导数的几何意义是函数图像在某一点处的切线斜率。
通过计算导数,可以确定函数图像在每一点处的切线斜率,从而获得函数在不同点处的曲线走势。
3. 导数的性质导数具有以下性质:- 常数的导数为0:若f(x)=c,其中c为常数,则f'(x)=0。
- 变量的导数为1:若f(x)=x,则f'(x)=1。
- 乘法法则:若f(x)和g(x)在某一点可导,则(fg)'(a) = f'(a)g(a) +f(a)g'(a)。
- 除法法则:若f(x)和g(x)在某一点可导,且g(a)≠0,则(f/g)'(a) =[f'(a)g(a) - f(a)g'(a)] / [g(a)]^2。
4. 导数的应用导数在实际问题中有着广泛的应用,以下是导数应用的几个典型例子:4.1 函数的极值点通过求函数的导数,可以确定其极值点。
当导数为0或不存在时,函数可能存在极值点。
通过解方程f'(x)=0或通过分析导数的符号变化,可以找到函数的极值点,进而确定函数的最大值或最小值。
4.2 函数的图像特征导数能够提供函数图像的关键信息,如函数的增减性、凸凹性和拐点等。
通过计算导数并分析其正负性和零点,可以确定函数的上升、下降区间;通过求二阶导数并分析其正负性和零点,可以确定函数的凸起、凹陷区间;通过求导数的变化点可以确定函数的拐点位置。
4.3 运动学问题在运动学中,速度和加速度与位置之间存在着导数的关系。
高中导数的概念导数定义一、导数第一定义设函数y = f(x) 在点x0 的某个邻域内有定义当自变量x 在x0 处有增量△x ( x0 + △x 也在该邻域内) 时相应地函数取得增量△y = f(x0 + △x) - f(x0) 如果△y 与△x 之比当△x→0 时极限存在则称函数y = f(x) 在点x0 处可导并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即导数第一定义二、导数第二定义设函数y = f(x) 在点x0 的某个邻域内有定义当自变量x 在x0 处有变化△x ( x - x0 也在该邻域内) 时相应地函数变化△y = f(x) - f(x0) 如果△y 与△x 之比当△x→0 时极限存在则称函数y = f(x) 在点x0 处可导并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即导数第二定义三、导函数与导数如果函数y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间I 内可导。
这时函数y = f(x) 对于区间I 内的每一个确定的x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数y =f(x) 的导函数记作y', f'(x), dy/dx, df(x)/dx。
导函数简称导数。
导数(Derivative)是微积分中的重要基础概念。
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
右上图为函数y = ƒ(x) 的图象,函数在x_0处的导数ƒ′(x_0) = lim{Δx→0} [ƒ(x_0 + Δx) - ƒ(x_0)] / Δx。
如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作ƒ′(x)或dy / dx。
导数高端知识点总结高中一、导数的概念1. 导数的定义在数学中,导数是函数变化率的量度,它表示函数在某一点的变化速率。
设函数y=f(x),若极限f'(x)=lim[(f(x+Δx)-f(x))/Δx](Δx→0)存在,则称f(x)在点x处可导,并称这个极限为函数f(x)在点x处的导数,记为f'(x)。
导数的几何意义是函数在某一点处的切线斜率。
2. 导数的几何意义导数的几何意义可以从图像的角度来理解。
在函数图像的某一点A处,函数的导数f'(x)表示了曲线在A点的切线斜率,也就是函数在这一点处的变化速率。
如果导数为正,表示函数在该点处是递增的;如果导数为负,表示函数在该点处是递减的;如果导数为零,表示函数在该点处的变化率为零,即函数在该点处有极值。
3. 导数的物理意义导数在物理学中也有着重要的应用。
例如,物体的位移与时间的关系可以用函数来描述,而物体的速度就是位移对时间的导数,加速度就是速度对时间的导数。
因此,导数可以用来描述物体在某一时刻的速度和加速度,这对于研究物体的运动特性具有重要的意义。
二、导数的性质1. 导数存在的条件函数f(x)在点x处可导的条件是函数在该点处的左导数和右导数存在且相等。
这个条件可以用极限的形式来描述,即lim[Δx→0-(f(x+Δx)-f(x))/Δx]=lim[Δx→0+(f(x+Δx)-f(x))/Δx]。
2. 导数的四则运算性质导数具有四则运算的性质,即对于两个可导函数f(x)和g(x),它们的和、差、积和商的导数可以通过原函数的导数来求得。
具体的性质如下:(1)和函数的导数:(f+g)'=f'+g'(2)差函数的导数:(f-g)'=f'-g'(3)积函数的导数:(fg)'=f'g+fg'(4)商函数的导数:(f/g)'=(f'g-fg')/g^23. 复合函数的导数如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也是可导的,它的导数可以通过链式法则来求得。
高中数学导数的定义
高中数学导数的定义:
1、什么是导数
高中数学导数是一种数学的概念,它旨在检验函数的变化趋势。
对函
数f(x),它的导数f'(x)是指函数f(x)的变化率,即随着变量x
的变化,函数的变化的趋势成为函数f'(x)的变化。
2.定义
高中数学中导数的公式定义是:如果函数f(x)在极限$x_0$处有定义,则它的极限$\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}$,若此极限
存在,则称此极限为函数f(x)在x处的导数,记做f'(x_0).
3.应用
高中数学导数在数学中有很多应用,如通过导数研究函数的斜率、切
线和单调性等,及函数最值,还可用来求解微分方程等。
4.常用公式
(1)求一阶导数的公式:$\frac{dy}{dx}=\frac{f(x+h)-f(x)}{h}$;
(2)求二阶导数的公式:$\frac{d^2y}{dx^2}=\frac{f''(x)=\frac{f(x+h)-2f(x)+f(x-h)}{h^2}}$;
(3)链式律:$\frac{d}{dx}[f(g(x))]=f'(g(x))g'(x)$.
5.性质
高中数学导数也有一些性质,如可加法性质和乘法性质:
(1)可加法性质:$\frac{d}{dx}(f(x)+g(x))
=\frac{df}{dx}+\frac{dg}{dx}$;
(2)可乘法性质:$\frac{d}{dx}(f(x)g(x))
=f(x)\frac{dg}{dx}+g(x)\frac{df}{dx}$。
关于导数的知识点总结一、导数的基本概念导数是描述函数变化率的概念。
对于函数y=f(x),在点x处的导数表示函数f(x)在这一点的变化率。
导数可以用极限的方式定义:如果函数f(x)在某一点x处可导,那么它的导数f'(x)可以表示为极限的形式:\[ f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]这个极限表示了在点x处沿着x轴的变化率,也就是对x的微小变化所引起的y的变化率。
如果这个极限存在,那么我们称函数在点x处可导,也就是有导数。
导数刻画了函数在某一点的斜率,它告诉我们函数在这一点的变化情况。
如果导数为正,说明函数在此处递增;如果导数为负,说明函数在此处递减;如果导数是零,说明函数在此处取得了极值。
导数还可以表示函数的瞬时变化率。
在物理学中,导数可以表示速度、加速度等物理量的变化率。
它可以告诉我们在某一时刻物体的速度、加速度等是如何变化的。
因此,导数不仅仅是在数学中有着重要的意义,在物理学中也有着广泛的应用。
二、导数的计算导数的计算是微积分中的关键内容。
对于简单的函数,可以通过极限的定义直接计算导数;而对于复杂的函数,可以利用导数的性质和一些常见的导数公式来进行计算。
下面将介绍一些常用的导数计算方法。
1. 导数的极限定义我们可以利用导数的极限定义来计算函数的导数。
例如,对于函数y=x^2,我们可以利用极限的形式计算它的导数:\[ \lim_{\Delta x\to0}\frac{(x+\Delta x)^2-x^2}{\Delta x}=\lim_{\Deltax\to0}\frac{x^2+2x\Delta x+(\Delta x)^2-x^2}{\Delta x}=\lim_{\Delta x\to0}2x+\Deltax=2x \]因此,函数y=x^2的导数为2x。
这就是通过极限的方式计算导数的基本方法。
高中数学教材知识点:导数的定义及其计算一、知识概述导数是高中数学中重要的概念之一,是微积分学中的基本内容。
导数的定义为:若函数y=f(x)在x0处有导数,则该导数称为函数f(x)在点x0处的导数,记为f'(x0)。
导数可理解为函数在某一点处的瞬时变化率,是函数曲线在该点处的斜率。
二、知识详解1.导数的定义函数y=f(x)在x0处的导数用极限表示为:f'(x0)=lim(h→0)(f(x0+h)-f(x0))/h其中,x0为自变量,h为一个极小的实数,f(x0)和f(x0+h)为函数f(x)在x0处和x0+h处的函数值。
2.导数的计算常见的导数计算方法包括:基本导数公式法、对数求导法、复合函数求导法、高阶导数求法等。
(1)基本导数公式法通过对基本函数的导数公式的掌握,可以求出大部分函数的导数。
常见的基本导数公式如下:函数导数常数函数 0幂函数 x^n的导数为nx^(n-1)指数函数 a^x的导数为a^xlna对数函数 loga(x)的导数为1/(xlna)三角函数 sinx的导数为cosx,cosx的导数为-sinx,tanx的导数为sec^2x(2)对数求导法a^x和loga(x)是互相反函数,利用两者的关系可以在求出一者导数的基础上得出另一者的导数。
具体公式如下:(a^x)'=lna*a^x(loga(x))'=1/(xlna)(3)复合函数求导法对于复合函数,通过链式法则可以求出导数。
链式法则公式如下:若y=f(u),u=g(x),则y对x的导数为:dy/dx=dy/du * du/dx(4)高阶导数函数f(x)的高阶导数为其导数的导数,可表示为f'(x)、f''(x)、f'''(x)……三、常见问题解答1.导数有什么应用?导数可以用来求函数的极值、函数的最大值和最小值、函数的凹凸性、函数的图像和曲线的切线等。
2.什么情况下函数没有导数?若函数在某一点处存在间断点或者没有定义,则函数在该点处没有导数。
高一数学导数相关知识点集锦高一数学导数的定义:当x的增量为δ时→ 0δy=fx-fx0与自变量增量之比的极限存在且有限,即函数f 在x0处可微,称为f在x0处的导数或变化率。
函数y=fx在x0点的导数f'x0的几何意义:表示函数曲线在p0[x0,fx0]点的切线斜率导数的几何意义是该函数曲线在这一点上的切线斜率。
一般来说,我们可以通过导数来判断函数的单调性:设y=FX在a和B中是可微的。
如果a和B中的f'x>0,FX在这个区间内单调增加,此时的切线斜率增加,函数曲线变得“陡峭”向上。
如果a和B中的f'x<0,那么FX在此区间内单调减小。
因此,当f'x=0,y=FX有一个最大值或最小值时,最大值就是最大值,最小值就是最小值高一数学求导数的步骤:求函数y=FX在x0处的导数的步骤:①求函数的增量δy=fx0+δx-fx0②求平均变化率③取极限,得导数。
高一数学导数公式:①c'=0c为常数函数;②x^n'=nx^n-1n∈q*;熟记1/x的导数③sinx'=cosx;cosx'=-sinx;tanx'=1/cosx^2=secx^2=1+tanx^2-cotx'=1/sinx^2=cscx^2=1+cotx^2secx'=tanxsecxcscx'=-cotxcscxarcsinx'=1/1-x^2^1/2arccosx'=-1/1-x^2^1/2arctanx'=1/1+x^2arccotx'=-1/1+x^2arcsecx'=1/|x|x^2-1^1/2arccscx'=-1/|x|x^2-1^1/2④sinhx'=hcoshxcoshx'=-hsinhxtanhx'=1/coshx^2=sechx^2coth'=-1/sinhx^2=-cschx^2sechx'=-tanhxsechxcschx'=-cothxcschxarsinhx'=1/x^2+1^1/2arcoshx'=1/x^2-1^1/2artanhx'=1/x^2-1|x|<1arcothx'=1/x^2-1|x|>1arsechx'=1/x1-x^2^1/2arcschx'=1/x1+x^2^1/2⑤e^x'=e^x;a^x'=a^xlnaln为自然对数inx'=1/xln为自然对数logax'=xlna^-1,a>0且a不等于1x^1/2'=[2x^1/2]^-11/x'=-x^-2高一数学导数的应用:1。
导数的概念人教社·普通高级中学教科书(选修Ⅱ)第三章第一节《导数的概念》(第三课时)导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.《导数的概念》这一节内容,大致分成四个课时,我主要针对第三课时的教学,谈谈我的理解与设计,敬请各位专家斧正.一、教材分析1.1编者意图《导数的概念》分成四个部分展开,即:“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”,编者意图在哪里呢?用前两部分作为背景,是为了引出导数的概念;介绍导数的几何意义,是为了加深对导数的理解.从而充分借助直观来引出导数的概念;用极限思想抽象出导数;用函数思想拓展、完善导数以及在应用中巩固、反思导数,教材的显著特点是从具体经验出发,向抽象和普遍发展,使探究知识的过程简单、经济、有效.1.2导数概念在教材的地位和作用“导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展.1.3 教材的内容剖析知识主体结构的比较和知识的迁移类比如下表:通过比较发现:求切线的斜率和物体的瞬时速度,这两个具体问题的解决都依赖于求函数的极限,一个是“微小直角三角形中两直角边之比”的极限,一个是“位置改变量与时间改变量之比”的极限,如果舍去问题的具体含义,都可以归结为一种相同形式的极限,即“平均变化率”的极限.因此以两个背景作为新知的生长点,不仅使新知引入变得自然,而且为新知建构提供了有效的类比方法.1.4 重、难点剖析重点:导数的概念的形成过程. 难点:对导数概念的理解.为什么这样确定呢?导数概念的形成分为三个的层次:f (x )在点x 0可导→f (x )在开区间(a ,b )内可导→f (x )在开区间(a ,b )内的导函数→导数,这三个层次是一个递进的过程,而不是专指哪一个层次,也不是几个层次的简单相加,因此导数概念的形成过程是重点;教材中出现了两个“导数”,“两个可导”,初学者往往会有这样的困惑,“导数到底是个什么东西?一个函数是不是有两种导数呢?”,“导函数与导数是怎么统一的?”.事实上:(1)f (x )在点x 0处的导数是这一点x 0到x 0+△x 的变化率xy∆∆的极限,是一个常数,区别于导函数. (2)f (x )的导数是对开区间内任意点x 而言,是x 到x +△x 的变化率xy∆∆的极限,是f (x )在任意点的变化率,其中渗透了函数思想. (3)导函数就是导数!是特殊的函数:先定义f (x )在x 0处可导、再定义f (x )在开区间(a ,b )内可导、最后定义f (x )在开区间的导函数. (4)y = f (x )在x 0处的导数就是导函数)(x f '在x =x 0处的函数值,表示为0|x x y ='这也是求f ′(x 0)的一种方法.初学者最难理解导数的概念,是因为初学者最容易忽视或混淆概念形成过程中几个关键词.....的区别和联系,会出现较大的分歧和差别,要突破难点,关键是找到“f (x )在点x 0可导”、“f (x )在开区间的导函数”和“导数”之间的联系,而要弄清这种联系的最好方法就是类比!用“速度与导数”进行类比.二、目的分析2.1 学生的认知特点. 在知识方面,对函数的极限已经熟悉,加上两个具体背景的学习,新知教学有很好的基础;在技能方面,高三学生,有很强的概括能力和抽象思维能力;在情感方面,求知的欲望强烈,喜欢探求真理,具有积极的情感态度.2.2 教学目标的拟定. 鉴于这些特点,并结合教学大纲的要求以及对教材的分析,拟定如下的教学目标:知识目标:①理解导数的概念.②掌握用定义求导数的方法.③领悟函数思想和无限逼近的极限思想.能力目标:①培养学生归纳、抽象和概括的能力.②培养学生的数学符号表示和数学语言表达能力.情感目标:通过导数概念的学习,使学生体验和认同“有限和无限对立统一”的辩证观点.接受用运动变化的辩证唯物主义思想处理数学问题的积极态度.三、过程分析设计理念:遵循特殊到一般的认知规律,结合可接受性和可操作性原则,把教学目标的落实融入到教学过程之中,通过演绎导数的形成,发展和应用过程,帮助学生主动建构概念.3.1 引导激趣设计意图:创设情景,提出课题.演示曲线的割线变切线的动态过程,为学生提供一个联想的“源”,从变量分析的角度,巧妙设问,把学习任务转移给学生.问题:割线的变化过程中, ①△x 与△y 有什么变化?②xy ∆∆有什么含义?③x y∆∆在△x →0时是否存在极限?3.2 概括抽象设计意图:回顾实际问题,抽象共同特征,自然提出:f (x )在x 0处可导的定义..,完成“导 数”概念的第一层次.曲线的切线的斜率 抽象⇓舍去问题的具体含义归结为一种形式相同的极限0lim x yx∆→∆∆ 即 f ′(x 0)= 0lim x yx ∆→∆∆=0000()()lim x f x x f x x∆→+∆-∆ (在黑板上清晰完整的板书定义,并要求学生表述、书写,以培养学生的数学符号表示和数学语言表达能力.)3.3 互动导标设计意图:设置两个探究问题,分析不同结果的原因,并引导学生提出新的问题或猜想,鼓励学生进行数学交流,激发学生进一步探究的热情,从而找到推进解决问题的线索——提出:f (x )在开区间(a ,b )内可导的定义,完成“导数概念”的第二个层次.. ①研究:函数y =2x +5在下列各点的变化率:(1)x =1,(2)x =2,(3)x =3②研究:函数y =x 2 在下列各点的变化率: (1)x =1,(2)x =2,(3)x =3定义:函数f (x )在开区间..(a ,b )内每一点可导......,就说f (x )在开区间....(a ,b )内可导.... 3.4 类比拓展设计意图:回顾“瞬时速度的概念”,渗透类比思想和函数思想............让学生产生联想,拓展出:f (x )在开区间(a ,b )内的导函数的定义,完成“导数”概念的第三层次.已有认知:物体在时刻t 0的速度: 00000()()lim lim .t t s t t s t sv t t∆→∆→+∆-∆==∆∆物体在时刻t 的速度.. 00()()lim lim .t t s s t t s t v t t∆→∆→∆+∆-==∆∆ 新认知:函数f (x )在开区间..(a ,b )内每一点可导......,就说f (x )在开区间....(a ,b )内可导.... ⇓点拨:映射→函数对于(a ,b )内每一个确定的值x 0,对应着一个确定的导数值)(0x f ',这样就在开区间(a ,b )内构成一个新函数⇓导函数(导数)00()()()limlim x x y f x x f x f x y x x∆→∆→∆+∆-''===∆∆ 3.5 概念导析设计意图:引导学生用辨析和讨论的方式,反思导数概念的实质,从而突破难点,促成学生形成合理的认知结构.辨析:(1)f ′(x 0)与0(())f x '相等吗?(2)000(2)()lim x f x x f x x∆→+∆-∆与f ′(x 0) 相等吗?试讨论:f ′(x 0)与)(x f '区别与联系.反思:“f (x )在点x 0处的导数”,“f (x )在开区间(a ,b )内的导函数”和“导数”之间的区别和联系.板书:导数概念主体结构示意图f (x )在点x 0处可导↓f (x )在开区间(a ,b )内可导↓f (x )在开区间(a ,b )内的导函数↓ 导数3.6 回归体验——体现“导数”的应用价值设计意图:通过随堂提问和讨论例题,增强师生互动,让学生在 “做”中“学”,体验求导的结果表示的实际意义,体验导数运算的作用,体会用导数定义求导的两种方法,产生认可和接受“导数”的积极态度,并养成规范使用数学符号的习惯.想一想:(1)导数的本质是什么?你能用今天学过的方法去解决上次课的问题吗?(第109页练习1、2,第111页练习1、2)有什么感想?(2)“切线的斜率”、“物体的瞬时速度”的本质都是什么?怎样表示?k =00|)(x x y x f ='='或k =)(x f ' v 0=00|)(t t s t s ='=' 或 v =)('t s(3)导数还可以解决实际生活中那些问题?你能举例说明吗?例题A 组:①已知S =πr 2,求r S '②已知V =34π3R ,求R V '③已知y =x 2+3x 求(1)y ';(2) 求y '︱x =2 例题B 组:④已知y =,求y ',并思考y '的定义域与函数在开区间可导的意义3.7引导小结设计意图:引导学生进行自我小结,用联系的观点将新学内容在知识结构、思想方法等方面进行概括,巩固新知,形成新的认知结构.知识结构:(1)导数的概念(语言表达;符号表示;“f (x )在点x 0处的导数”,“导函数”和“导数”之间的联系和区别.);(2)主要数学思想:极限思想、函数思想; (3)用定义求导的方法,步骤; (4)导数的作用.3.8分层作业设计意图:注意双基训练与发展能力相结合,设计递进式分层作业以满足不同学生的多样化学习需求,使他们得到最全面的发展.把教材的第112页的关于“可导必连续”的命题调整为选做题既不影响主体知识建构,又能满足学生的进一步的探究需求.必 做 题:1.教材第114页,第2,3,4题. 2.若f ′(x 0)=a ,(1)求0000()()lim x f x x f x x ∆→-∆-∆的值.(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.思 考 题:1.已知y =x 3 求 (1)y ';(2)y '︱x =0;(3)求曲线在(0,0)处的切线方程.2.讨论y =|x |在x =0处是否可导? 选 做 题:求证:如果函数y =f (x )在x 0处可导,那么函数y =f (x )在点x 0处连续.四、教法分析依据:循序渐进原则和可接受原则.设计理念:把教学看作是一个由教师的“导”、学生的“学”及其教学过程中的“悟”为三个子系统组成的多要素的和谐整体.教法:支架式过程法,即:a ×b =学习a :教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生.b :学生接受任务,探究问题,完成任务.a ×b :以问题为核心,通过对知识的发生、发展和运用过程的演绎、揭示和探究,组织和推动教学.图3:a ×b =“导”×(“学”+“悟”)=“教”ד学”=学习图4:“学”启 接发 受| |诱 探导 究|激 完励 成可接受原则 认知规律4.1 “导” ——引导学生用变量观点去认识△x ,△y 和x y ∆∆, ——引导学生用函数的思想去认识f ′(x 0)向 f ′(x )拓展的过程.——引导学生联系的观点弄清导数概念之间的区别和联系“学”——通过具体的导数背景提出问题.....——通过类比、联想分析问题.....——通过交流,体验,反思解决问题....“悟”——通过教师的“导”,学生的“学”,“悟”出导数的本质.4.2 借助多媒体显示直观、体现过程的优势来展示割线的动态变化,向学生渗透无限逼近的极限思想,为抽象出导数的概念作必要的准备.4.3 板书设计§3.1.3 导数的概念(主线)1. 定义:函数y=f(x)在x0处可导①研究②研究辨析2. 定义:函数y=f(x)在(a,b)可导例题A组:例题B组:3. 定义:函数y=f(x)在(a,b)内的导函数(导数)4. 区别与联系5. 用导数的定义求f(x)在(a,b)内的导数的方法比较与鉴别6. 小结(知识,方法,思想)区别与联系作业五、评价分析评价模式:围绕教学目标的落实情况,以过程性评价为主,形成性评价为辅,采取及时点评、延时点评与学生自评三结合.既充分肯定学生的思维,赞扬学生的思路,激励学生的思辨,又必须以科学的态度引导学生服从理性,追求真理.主要手段:1.通过“概念导析”,“回归与体验”,进行点评和互评,考察学生对“导数概念”及“导数运算”的掌握情况;考察学生归纳,抽象和概括的能力是否形成,并进行有争对性的及时调整和补充.2.通过引导小结情况,考察学生是否突破了难点,及时调整“问题”导向.3.通过分层作业的完成情况,考察的总体知识结构的同化过程是否完成;通过B组例题和思考题的完成情况,考察学生的数学符号表示和解决实际问题的能力是否形成.调整和补充下一课时的教程.对选做题的完成情况,主要评价优生的个体发展情形.这就是我对这一课时的理解、涉及观点和方法,可能有不当之处,敬请各位专家批评与斧正,谢谢大家!几点说明.本次说课有如下几个基本的特点.1.“以学生为本”的教育观是教学设计的根本指导思想.对学生学习与发展的关系作了认真思考.强调学生的“经历”,“体会”,“感受”的过程学习;从学生的发展出发,通过对学生的“情感”,“态度”,“理性精神”的关注与培养,来优化学生的思维品质.在作业设计方面尽量满足多样化的学习需求.2.在难点的突破上采取了有效的分解策略........2.1.通过对学生已有的认知结构和学生最近发展区的剖析,充分利用挖掘教材的背景材料,找准了“瞬时速度”与“导函数”,“速度”与“导数”的类比,为学生对导数的理解创设了先机,打开学生从情感.......上认可和接受..........“.导数..”.的通道2.2.对导数概念中的几个“重要的关键词......”的理解作了恰当的引导和作了精准的导析,搞清它们之间的区别和联系,才能使学生真正的理解“导数”,为学生同化“导数的概念”指明了方向.2.3.在过程分析中设计了“回归体验”,强调注重学生对新知的体验,突出了导数的应用价值,有利于实现情感目标,加快了学生同化概念的进程.2.4.在引导学生小结的过程中,考察学生是否突破了难点,以便进行及时的纠正和补充,分层作业中专门设计突破难点的习题,使突破难点得到了保证.3.形式和内容得到统一,具有很强的操作性.3.1.通过对教材内容、学生情况的分析,较好地解决了“教什么?”--设计中明确指出了知识、能力、情感方面的三维目标;选择了较为恰当的支架过程教法并设计了有操作性的,说出了“怎么教”的具体措施. 教师的组织者、引导者、合作者的身份没有动摇学生的主体地位,更没有否定学生智力发展需要有意识的培养.既不高估学生的理解力,也不抹杀学生所具有创造性.3.2.在教学的第一环节借助了多媒体显示直观、体现过程的优势来展示割线的动态变化,向学生渗透极限思想......,为抽象出导数的概念做了积极的准备,这是传统的黑板和粉笔难以做到的.。