冷挤压模具设计
- 格式:doc
- 大小:1.89 MB
- 文档页数:32
《冷挤压成型工艺及模具设计》课程教学大纲一、课程名称(中英文)中文名称:冷挤压成型工艺及模具设计英文名称:Cold Extrusion Processes and Die Design二、课程编码及性质课程编码:0817761课程性质:选修课三、学时与学分总学时:24学分:1.5四、先修课程机械设计、材料成形工艺、金属学及热处理和材料成形原理等五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供材料科学与工程专业和电子封装技术专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是第七学期开设的一般选修课,其教学目的主要包括:1、掌握金属材料冷挤压的变形性质和成型规律,以及冷挤压模具设计的方法;2、掌握冷挤压成型工艺及模具设计的特点及国内外发展概况,查找并掌握冷挤压技术及模具设计发展前沿的新技术的特性;3、掌握挤压成形的各种方法,能独立编制工艺规程和设计冷挤压模具,分析和解决冷挤压生产问题,具有今后从事冷挤压成型工艺和复杂模具开发与设计的能力。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)本课程以介绍冷挤压成型工艺与模具为主体、以讲述两者的设计为重点;2)在全面了解与掌握挤压成形的材料原理及力学原理的基础上,重点学习冷挤压加工工序和模具的设计;3)重点学习的章节内容包括:第2章“挤压基本原理”(6学时)、第5章“冷挤压加工工序设计”(4学时)、第6章“冷挤压模具设计”(6学时)。
教学难点:1)冷挤压成型工艺及模具设计是实践性极强的课程之一,本课程将密切结合学生的生产实习、课程设计、实验课等实践环节,培养学生对冷挤压成型工艺及模具的认识及设计能力,提高授课质量与效果。
2)通过本课程学习,要求掌握冷挤压成型工艺的变形特点、应用范围、质量控制方法等,具备合理设计冷挤压成型工艺和复杂模具的实践能力。
八、教学方法与手段:教学方法:(1)采用现代化教学方法(含PPT演示,工艺动画,视频资料等),讲授冷挤压工艺的变形特点及应用领域,以提高教学效果及效率;(2)采用课堂教学与学生PPT汇报、交流讨论等方式,进行课堂互动,吸引学生的注意力、激发学生的学习热情,提高学生的学习效果。
挤压工艺及模具设计Extrusion Technology and Mould Design一、挤压工艺分类挤压可分为以下三类:1)冷挤压,又称冷锻,一般指在回复温度以下(室温)的挤压。
2)温挤压,一般指坯料在金属再结晶温度以下、回复温度以上进行的挤压。
对于黑色金属,以600℃为界,划分为低温挤压和高温挤压。
3)热挤压,指坯料在金属再结晶温度以上进行的挤压。
1)冷挤压工艺冷挤压是在冷态下,将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及一定力学性能的挤压件。
冷挤压与热锻、粉末冶金、铸造及切削加工相比,具有以下主要优点:1)因在冷态下挤压成形,挤压件质量好、精度高、其强度性能也好;2)冷挤压属于少、无切削加工,节省原材料;3)冷挤压是利用模具来成形的,其生产效率很高;4)可以加工其它工艺难于加工的零件。
2)温挤压工艺温挤压成形技术是近年来在冷挤压塑性成形基础上发展起来的一种少无切削新工艺,又称温热挤压。
它与冷、热挤压不同,挤压前已对毛坯进行加热,但其加热温度通常认为是在室温以上、再结晶温度以下的温度范围内。
对温挤压的温度范围目前还没有一个严格的规定。
有时把变温前将毛坯加热,变形后具有冷作硬化的变形,称为温变形。
或者,将加热温度低于热锻终锻温度的变形,称为温变形。
从金属学观点来看,区分冷、热加工可根据金属塑性变形后有无加工硬化现象存在来决定似乎更合理些。
在金属塑性变形后存在加工硬化现象这个过程称为冷变形及温变形。
3)热挤压工艺热挤压是几种挤压工艺中最早采用的挤压成形技术,它是在热锻温度时借助于材料塑性好的特点,对金属进行各种挤压成形。
目前,热挤压主要用于制造普通等截面的长形件、型材、管材、棒料及各种机器零件等。
热挤压不仅可以成形塑性好,强度相对较低的有色金属及其合金,低、中碳钢等,而且还可以成形强度较高的高碳、高合金钢,如结构用特殊钢、不锈钢、高速工具钢和耐热钢等。
冷挤压模具设计冷挤压模具设计是制造高精度零件的重要技术之一。
本文将详细介绍冷挤压模具设计的基本原理、设计流程、常见问题及解决方案等内容,以帮助读者更好地理解和应用该技术。
一、基本原理冷挤压是利用压力将金属材料挤出成形的一种加工方法。
其中,模具是冷挤压技术中至关重要的工具,决定了成品质量和生产效率。
因此,冷挤压模具设计的质量和精度直接影响到成品的质量和生产成本。
基本原理上,冷挤压模具即将金属渐进挤出,使其通过一组具有特定几何形状的孔道。
钢料在配有专用设备的机器中加热,经过一道或多道模压工序,最终成形,如螺母、螺栓、垫圈、铆钉等。
二、设计流程1、确定零件的尺寸与形状。
了解产品及主要特征,对某些铝合金、镁合金等特殊材料使用规范与制造规程的要求。
2、绘制图纸。
绘制出产品的三维模型图,确定毛坯的尺寸、形状和突出部位,以确保设计的模具能够满足产品的需求,并考虑一些细节问题,如材料规格、模具磨损和抵抗压塑性强度的能力等。
3、确定模具类型。
根据产品的尺寸、形状和工艺要求,确定冷挤压模具的类型。
常用的冷挤压模具包括拉伸模、挤压模、钝化模、套筒模等。
4、设计模具的结构。
设计模具的结构时,需要考虑到模具主体的结构、腔体形状、孔形结构等几个方面,还需要根据压力、预压、挤出量等要素,确定可承受的载荷。
同时,还需要考虑一些实际运用中需要注意的问题,例如设定模具配合公差、调整模具的开合间隙、设定模具的定位和定向等。
5、制作模具样品。
样品制作过程中,需要考虑到模具结构的合理性,以及各种元素的配合度。
制作完成后,需要进行模具的调试、试胶、实验成型等环节,进行逐渐的调整和完善。
三、常见问题及解决方案1、模具寿命不够长。
在设计时应考虑模具的材质和硬度,通过表面热处理、高频淬火、氮化等方式进行强化处理,以延长模具的使用寿命。
2、模具容易出现磨损或变形。
在制作过程中,要合理设定模具的使用寿命,并且需要根据产品的多重要素,优化模具的设计结构,来提高其使用的稳定性。
冷挤压模具的结构分类与设计(冷挤压模具是用于制造金属材料中凸台、凹槽、型材等形状的模具。
冷挤压是一种用压力将金属材料挤压成希望得到的形状的加工方法,其工艺和设备相对简单,成本低,可以制造出高强度和高精度的零部件,因此被广泛应用于汽车、航空航天、电子、军工等行业。
冷挤压模具的结构主要包括模具座、模具坯料导向器、模具上下模、模具磨床、模具中心销等几个部分。
模具座是支撑和固定模具的基础,其通常由底板和护板组成。
模具座上部设有导向器,用于引导坯料进入模具。
模具上下模是冷挤压模具的主要部分,通过在模具中心销的作用下上下开合,实现模具内坯料的挤压成型。
模具磨床主要用于修磨模具的工作面,并确保模具上下模的平行度。
模具中心销则是用于固定模具上下模的位置,以确保模具挤压工艺的精度。
1.封闭型模具:模具上下模的结构封闭,适用于对形状和尺寸要求较高的零部件的生产。
封闭型模具具有较高的工艺要求,但可以制造出更高精度的零部件。
2.开放型模具:模具上下模的结构相对开放,适用于要求不太高的形状的零部件的生产。
开放型模具结构相对简单,制造成本低,但精度相对较低。
3.多工位模具:模具上设有多个工作位置,可同时进行多个零件的挤压成型,提高生产效率。
多工位模具通常应用于批量生产的场合。
1.材料选择:模具材料应具有良好的耐磨性、强度和韧性,常见的模具材料有工具钢、硬质合金等。
根据具体的工艺要求,还可以进行表面硬化处理。
2.结构设计:结构设计应根据零件的形状和尺寸来确定。
模具的结构应尽量简单,以便于制造和维护,同时还需要考虑模具的强度和刚度。
3.工作面设计:工作面需要考虑零件的形状和尺寸,工作面的形状应尽量与零件的形状相匹配,以确保成型质量。
4.导向装置:导向装置用于引导坯料进入模具,并确保上下模的相对位置的准确性。
导向装置应结构简单,操作方便。
5.挤压力的确定:挤压力的大小直接影响到成型质量和模具的寿命。
挤压力的确定需要考虑零件的形状和尺寸,以及材料的性能。
套筒扳手冷挤压工艺及模具设计一、引言套筒扳手是一种常见的手工工具,广泛应用于机械加工、维修等领域。
冷挤压技术是一种高效、精确的金属成形工艺,可用于生产套筒扳手。
本文将介绍套筒扳手的冷挤压工艺及模具设计。
二、冷挤压工艺2.1 工艺概述套筒扳手冷挤压工艺是通过将金属材料塑性变形成扳手的形状。
该工艺具有高效、节能、成本低等优点,能够满足大批量生产的需求。
2.2 工艺步骤套筒扳手冷挤压的工艺步骤如下:1. 材料准备:选择适合的金属材料,如碳钢、合金钢等。
2. 模具设计:设计套筒扳手的模具,包括挤压模、顶针等。
3. 材料预热:将金属材料进行适当的预热,以提高挤压性能。
4. 挤压成形:将预热后的金属材料放入挤压模中,施加压力使之变形。
5. 冷却处理:将挤压后的工件进行冷却处理,以提高强度和硬度。
6. 表面处理:对冷却后的工件进行表面处理,如镀层、热处理等。
7. 检验包装:对最终成品进行检验,合格后进行包装。
2.3 工艺参数套筒扳手冷挤压的工艺参数包括:挤压压力:根据材料的性质和形状要求确定合适的挤压压力。
挤压速度:控制挤压过程的速度,以保证工件的质量。
模具温度:根据材料的热处理要求,调整模具的温度。
冷却时间:冷却处理的时间要足够,以保证工件的性能。
三、模具设计3.1 模具类型套筒扳手冷挤压的模具主要包括挤压模和顶针两种。
挤压模:用于将金属材料塑性变形成工件的形状。
顶针:用于支撑和定位金属材料,在挤压过程中起到辅助作用。
3.2 模具材料套筒扳手冷挤压的模具材料需要具备高强度、耐磨损和耐腐蚀等特性。
常用的模具材料包括工具钢、合金钢等。
3.3 模具结构套筒扳手冷挤压的模具结构应满足以下要求:1. 确保工件的尺寸精度和表面质量。
2. 提高生产效率,减少模具更换次数。
3. 方便模具的制造和维修。
3.4 模具设计要点在套筒扳手冷挤压的模具设计中,需要考虑以下要点:1. 模具选择合适的材料和热处理工艺,以提高使用寿命。
2. 设计模具的结构合理,易于拆卸和安装。
目录目录 (1)冷挤压模具设计及其成形过程 (3)第一章绪论 (3)1.1冷挤压成形技术发展概况 (4)1.2选题依据和设计主要内容 (6)1.2.1毕业设计(论文)的内容 (6)1.2.2 毕业设计(论文)的要求 (6)第二章冷挤压工艺设计 (7)2.1挤压工艺步骤 (7)2.2工艺设计步骤 (9)2.2.1计算毛坯的体积 (9)2.2.2确定坯料尺寸 (10)2.2.3计算冷挤压变形程度 (11)2.2.4确定挤压件的基本数据 (13)2.2.5确定挤压次数 (13)2.2.6工序设计 (13)2.2.7工艺方案确定 (19)2.2.8各主要工序工作特点进一步分析 (21)第三章压力设备选择 (24)3.1各主要工序所需镦挤力 (24)3.2主要设备选用 (25)第四章模具设计 (26)4.1冷挤压模具设计要求 (27)4.2凸模设计依据 (28)4.3冷挤压组合凹模设计依据 (29)4.4凸模设计 (34)4.4.1镦平凸模设计 (34)4.4.2凹模设计 (36)4.5预成形模具设计 (37)4.5.1预成形凸模设计 (38)4.5.2预成形凹模设计 (39)4.6终成形模具设计 (41)4.6.1终成形凸模设计 (41)4.6.2终成形凹模设计 (42)4.7冷挤压模架设计 (43)4.7.1冷挤压模架设计的基本原则 (43)4.7.2模架的设计 (44)4.7.3其它零件设计 (46)第五章挤压模具零件加工工艺的编制 (51)5.1加工工艺编制原则 (51)5.2加工工艺的编制 (51)第六章总结及课题展望 (54)6.1本文工作总结 (54)6.2课题展望 (54)参考文献 (55)谢辞 (56)附录一:英文科技文献翻译 (57)英文翻译: (62)附录二毕业设计任务书 (66)冷挤压模具设计及其成形过程机械与电气工程学院机械设计制造及其自动化专业06城建机械乔红娇指导老师雷声第一章绪论挤压就是零件金属毛坯放在挤压模腔中,在一定温度下,通过压力机上固定的凸模或凹模向毛坯施加压力,使金属毛坯产生塑性变形而制得零件的加工方法。
第六章冷挤压模具设计本章通过一些典型的冷挤压模具结构,介绍冷挤压模具的特点、其工作零件及其它主要零部件的设计要点及步骤等。
第一节冷挤压模具的结构及分类一、概述冷挤压是在常温下对金属材料进行塑性变形,其单位挤压力相当大,同时由于金属材料的激烈流动所产生的热效应可使模具工作部分温度高达200℃以上,加上剧烈的磨损和反复作用的载荷,模具的工作条件相当恶劣。
因此冷挤压模具应具有以下特点:(1)模具应有足够的强度和刚度,要在冷热交变应力下正常工作;(2)模具工作部分零件材料应具有高强度、高硬度、高耐磨性,并有一定的韧性;(3)凸、凹模几何形状应合理,过渡处尽量用较大的光滑圆弧过渡,避免应力集中;(4)模具易损部分更换方便,对不同的挤压零件要有互换性和通用性;(5)为提高模具工作部分强度,凹模一般采用预应力组合凹模,凸模有时也采用组合凸模;(6)模具工作部分零件与上下模板之间一定要设置厚实的淬硬压力垫板,以扩大承压面积,减小上下模板的单位压力,防止压坏上下模板;(7)上下模板采用中碳钢经锻造或直接用钢板制成,应有足够的厚度,以保证模板具有较高的强度和刚度。
典型的冷挤压模具由以下几部分组成:1.工作部分如凸模、凹模、顶出杆等;2.传力部分如上、下压力垫板;3.顶出部分如顶杆、反拉杆、顶板等;4.卸料部分如卸料板、卸料环、拉杆、弹簧等;5.导向部分如导柱,导套、导板、导筒等;6.紧固部分如上、下模板、凸模固定圈、固定板、压板、模柄、螺钉等。
二、冷挤压模具分类冷挤压模具有多种结构形式,可根据冷挤压件的形状、尺寸精度及材料来选择合适的模具结构形式。
冷挤压模具可以按以下几个方面来分类。
(一)按工艺性质分类模具按工艺性质可分为:正挤压模、反挤压模、复合挤压模、镦挤压模等。
1.正挤压模图6-1所示为实心件正挤压模。
该模具更换相应的工作部分零件,可进行其它零件的正挤,也可用于反挤压、复合挤压和镦挤。
顶出系统由零件1、2、3、4组成可调式拉杆,其中件3为调节螺母。
旋转螺母可以调节拉杆长度,以适合不同零件挤压后的顶出。
凸模6由活动护套加以保护,以增加凸模的强度和稳定性。
此外,当该模具用于反挤压或复合挤压时,更换合适的护套还可以利用上模部分的打料系统进行卸料。
图6-1 实心件正挤压模图6-2所示是用于黑色金属空心零件正挤压的模具图。
模具的工作部分为凸模和凹模。
凸模16的心部装有凸模芯轴15,芯轴15的心部设有通气孔与模具外部相通,在凸模中以便上下滑动。
凸模16的上顶面与淬硬的垫板13接触,以便扩大上模板3的承压面积。
凹模2经垫块8与垫板9固定于下模板11上。
由图可看出,凸模与凹模的中心位置是不能调整的,凸、凹模之间的对中精度完全靠导柱7与导套6以及各个固定零件之间的配合精度来保证,因此这种模具结构常称为不可调整式模具。
很明显,不可调整式模具的制造精度要求很高,但安装方便,而且模架具有较强的通用性,若将工作部分更换,这副模具可以用作反挤压或复合挤压。
由图还可知,凸模回程时,挤压件将留在凹模内,因此需在模具下模板上设置顶出杆10。
2.反挤压模图6-3所示是一种典型的具有导向装置的反挤压模。
该模具是在小型(无顶出装置)压力机上使用的杯形件反挤压模。
凸模7靠压环10、定位圈6和大锣母11紧固与定位,可以实现快换。
凹模采用组合凹模形式。
为便于反挤压件从凹模中取出,设计了间接顶出装置,反挤压力在下模完全由顶出杆17承受,顶件力由反拉杆式联动顶出装置(由件3、20、21、22、23、24组成)提供,该顶出装置在模座下方带有活动板22,当挤压件顶出一段距离后,通过带斜面的斜块24将22撑开,使顶杆23的底面悬空,使之靠自重复位,为下一次放置毛坯做好准备。
而活动板22靠其外圈的拉簧21合并。
上模也设计了卸件装置,由于杯形挤压件较深,为了加强凸模的强度,除工作段外,凸模的直径加粗并开出三道卸料槽,供带有三个内爪形的卸料环12卸料。
该模具具有一定的通用性,只要将凸模、凹模、顶出杆、垫块18、19加以更换,这副模具就可以挤压不同形状和尺寸的工件,也适用于正挤压和复合挤压。
3.复合挤压模图6-4为活塞销的复合挤压的模具图。
其工作部分由上凸模5、下凸模3及凹模4构成。
由于上凸模回程时挤压件将留在凹模内,因此必须在下下模部分设置顶件装置(由顶杆1和顶件套2构成)。
由图可看出该复合挤压模具工作部分的一个显著的特点,即在上凸模外壁上套有控制挤压件长度方向尺寸的限流套6。
因为上凸模向下挤压毛坯时,金属向上流动的阻力较小,如果没有限流套的控制将使活塞销的上孔深于下孔,加限流套6后,可迫使金属向下流动,保证上、下孔深度尺寸一致。
4.镦挤模图6-5所示为镦挤模。
凸模2与外套1组成组合式凸模,以提高凸模的使用寿命。
组合式凸模靠螺母4紧固在定位圈3上,以保证凸模定位准确,装卸方便。
挤压结束,靠压力机顶出装置推动顶件6将挤压件顶出凹模5。
(二)按有无导向装置分模具按有无导向装置可分为:导柱导套冷挤压模、模口导向冷挤压模、导筒导向冷挤压模及无导向冷挤压模。
1.导柱导套导向冷挤压模该类模具如图6-1~图6-5所示,它是冷挤压模具中最常见的一种模具结构。
中小型冷挤压模具一般采用两导柱导套形式,大型的冷挤压模具采用四导柱导套形式,精密冷挤压模具还采用滚珠式导柱导套。
采用这类结构的模具可以保证上下模具有较好的对中性,冷挤压件同心度好,但是模具制造较复杂。
2.模口导向冷挤压模图6-6为模口导向冷挤压模。
凸模4靠凸模固定圈通过螺母固定在上模部分。
凹模为硬质合金,凹模外层有预应力圈。
挤压件卡在凹模内,可通过顶杆7将工件顶出。
如挤压件紧包在凸模上,则通过卸料板将工件卸下。
由于凸模导向部分尺寸与挤压件外径相同,因此必须在凸模上铣出三条卸料槽来作为卸料用。
起到模口导向作用的导向套3与凸模的间隙一般在0.02mm以内,这样能保证挤压件的壁厚误差很小。
这种导向方法简便、实用,导向效果比导柱导套式导向还要好。
不过这种导向方式一般用于挤压较浅反挤压件的模具,同时对压力机导轨的导向精度要求较高。
图中模口导向部分采用与凹模分体形式,也有整体式的,即凹模型腔上部分即为导向部分。
3.导筒导向冷挤压模图6-7为摩托车主轴双端花键复合挤压模具简图,它是一副导筒导向挤压模。
模具由上模固定套10与下模固定套11进行导向,主轴两端花键分别在上齿形凹模5和下齿形凹模3内挤压成形。
这种采用上下同时挤压成形满足了双端齿形的形位精度要求。
它实质是双向减径挤压,毛坯不能产生镦粗,因此对变形程度、模具工作段的形状、润滑条件以及毛坯材料的状态要求都很高。
另外由于挤出段长度较长,很容易产生弯曲,在齿形凹模非工作段及垫块上设置校形工作带,可以克服这一问题。
第二节模具工作部分设计冷挤压工作部分零件是指凸模、凹模、顶杆等在挤压时直接参与挤压过程的一些零件。
一、正挤压模具工作部分零件设计(一)正挤压凸模正挤压凸模的作用主要是传递挤压力,其设计较为简单,因为实际上只要凸模上所受的单位挤压力不超过2500MPa 即可。
在凸模和凹模之间应具有合适的间隙,这是因为:(1)要避免在挤压后零件上形成毛刺,这就要求较小的间隙,这一点在挤比较软的有色金属材料时特别重要;(2)必须保证挤压时,由于凸模弹性变形而产生的直径增大,凸、凹模之间仍要有一定的间隙。
1.正挤压凸模的形式正挤压凸模基本上有五种形式,如图6-8所示。
图a用于正挤压实心件,其下端面是平的,形状比较简单,制造方便。
图b~图e用于正挤压空心件。
其中图b为整体式结构,可用于挤压软金属,其过渡部分应用光滑圆弧连接,以避免应力集中而导致芯棒折断。
图c~e为组合式凸模。
其中图c 的芯棒与凸模内孔之间为过渡配合,这种结构可以大大减少芯棒与凸模结合处的应力集中,不过在挤压中如金属向下流动剧烈时,摩擦力过大也可能导致芯棒拉断。
这种凸模适应于芯棒直径较大,或挤压材料不太硬,或摩擦系数较小的材料挤压。
图d的芯棒与凸模内孔采用间隙配合,在挤压中芯棒可以随金属材料同步向下移动,因此改善了芯棒的受拉情况,使芯棒不易拉断,这种凸模可用于挤压黑色金属。
图e为浮动式凸模,其在芯棒上部放一弹簧,在挤压中芯棒受拉,弹簧被压缩,可以克服更大的拉力,能有效地防止芯棒拉断。
这种凸模可以用于材料硬度和摩擦力比较大的黑色金属挤压。
为了进一步防止芯棒拉断及卸料方便,芯棒一般做出10´~30´的斜度。
2.正挤压凸模尺寸参数设计以图6-8e的凸模为例,凸模各部分尺寸参数见表6-1。
(二)正挤压凹模正挤压凹模根据单位挤压力大小可选择单层整体凹模或组合凹模。
有时单位挤压力小时也可采组合凹模,以降低模具制造成本。
1.凹模型腔尺寸确定 图6-9为正挤压凹模形状尺寸。
其外圆形状做成一定斜度的锥形,以便装上预应力圈。
凹模型腔深度h3根据毛坯长度和挤压前凸模需进入凹模导向深度(一般10mm )来决定。
凹模的入模锥度一般采用60~126°较合理(对于较软的材料,也可采用180°)。
凹模入模锥度大,挤压力增加,如超过126°,金属挤压时易成“死区”,不利于金属的流动。
塑性差的金属挤压后,“死区”的材料会脱落。
锥角小于60°时,金属挤压时摩擦阻力增加,使挤压力也增加,同时顶件力也增加。
凹模收口部分应采用适当的圆角半径过渡。
表6-1 正挤压凸模(图6-9e )尺寸参数设计计算表 名 称 尺 寸 参 数 芯棒直径d 2 按空心件孔径最大尺寸设计 芯棒长度 l 空心毛坯高度+凹模工作带高度 凸模工作部分高度h 挤压工作行程+卸料板厚+10mm凸模工作部分直径d 凹模型腔-0.02mm定位部分直径d 3 (1.2~1.4) d 支承部分直径d 4 (1.8~2.0) d 支承部分高度h 1 (0.3~0.5) d 圆角半径R 1(0.5~1.0) d圆角半径的大小对模具的使用寿命影响很大。
一般圆角半径越大,凹模的使用寿命越长,当然圆角半径的值受到挤压零件形状的限制。
凹模型腔的工作带长度h1应适当选择:纯铝:h1=1~2 mm;硬铝、紫铜、黄铜:h1=1~3 mm;低碳钢: h1=2~4 mm。
在工作带以下的孔径D2应使挤出的零件不再与凹模接触,以免增加摩擦力,需扩大为D2=D1+(0.2~0.4)mm。
由D1到D2也应光滑过渡。
底厚h2应以强度要求进行选择,一般可取h2=(1.1~1.2)D。
2.凹模结构形式正挤压组合凹模的结构形式有六种,如图6-10所示。
图a的内层凹模为整体式,结构简单,制造安装方便,但在单位挤压力较大情况下,型腔转角处由于应力集中较大,易产生横向开裂。
图b~图f的内层凹模为分割式结构,其中图b、图c为纵向分割式,最内层凹模镶圈与凹模之间采用0.02mm的过盈配合,当凹模与外面两层预应力圈压合后实际过盈将进一步增大,因此凹模镶圈的尖角处不会崩裂,在挤压中也不会产生钻料现象。